{"title":"非光滑映射的可逆性","authors":"M. Montenegro, Adilson E. Presoto","doi":"10.4310/ARKIV.2017.V55.N1.A11","DOIUrl":null,"url":null,"abstract":"Let F :RN→RN be a locally Lipschitz continuous function. We prove that F is a global homeomorphism or only injective, under suitable assumptions on the subdifferential ∂F (x). We use variational methods, nonsmooth inverse function theorem and extensions of the Hadamard-Levy Theorem. We also address questions on the Markus-Yamabe conjecture.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Invertibility of nonsmooth mappings\",\"authors\":\"M. Montenegro, Adilson E. Presoto\",\"doi\":\"10.4310/ARKIV.2017.V55.N1.A11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F :RN→RN be a locally Lipschitz continuous function. We prove that F is a global homeomorphism or only injective, under suitable assumptions on the subdifferential ∂F (x). We use variational methods, nonsmooth inverse function theorem and extensions of the Hadamard-Levy Theorem. We also address questions on the Markus-Yamabe conjecture.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ARKIV.2017.V55.N1.A11\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2017.V55.N1.A11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let F :RN→RN be a locally Lipschitz continuous function. We prove that F is a global homeomorphism or only injective, under suitable assumptions on the subdifferential ∂F (x). We use variational methods, nonsmooth inverse function theorem and extensions of the Hadamard-Levy Theorem. We also address questions on the Markus-Yamabe conjecture.