Karhunen-Loeve变换特征模态中的渐近噪声分布

Yu Ding, H. Xue, N. Jin, Yiu-Cho Chung, Xin Liu, Yongqin Zhang, O. Simonetti
{"title":"Karhunen-Loeve变换特征模态中的渐近噪声分布","authors":"Yu Ding, H. Xue, N. Jin, Yiu-Cho Chung, Xin Liu, Yongqin Zhang, O. Simonetti","doi":"10.4172/2157-7420.1000122","DOIUrl":null,"url":null,"abstract":"Karhunen-Loeve Transform (KLT) is widely used in signal processing. Yet the well-accepted result is that, the noise is uniformly distributed in all eigenmodes is not accurate. We apply a result of the random matrix theory to understand the asymptotic noise distribution in KLT eigenmodes. Noise variances in noise-only eigenmodes follow the Marcenko-Pastur distribution, while noise variances in signal-dominated eigenmodes still follow the uniform distribution. Both the mathematical expectation of noise level in each eigenmode and an analytical formula of KLT filter noise reduction effect with a hard threshold were derived. Numerical simulations agree with our theoretical analysis. The noise variance of an eigenmode may deviate more than 60% from the uniform distribution. These results can be modified slightly, and generalized to non-IID (independently and identically-distributed) noise scenario. Magnetic resonance imaging experiments show that the generalized result is applicable and accurate. These generic results can help us understand the noise behavior in the KLT and related topics.","PeriodicalId":90900,"journal":{"name":"Journal of health & medical informatics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Asymptotic Noise Distribution in Karhunen-Loeve Transform Eigenmodes\",\"authors\":\"Yu Ding, H. Xue, N. Jin, Yiu-Cho Chung, Xin Liu, Yongqin Zhang, O. Simonetti\",\"doi\":\"10.4172/2157-7420.1000122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Karhunen-Loeve Transform (KLT) is widely used in signal processing. Yet the well-accepted result is that, the noise is uniformly distributed in all eigenmodes is not accurate. We apply a result of the random matrix theory to understand the asymptotic noise distribution in KLT eigenmodes. Noise variances in noise-only eigenmodes follow the Marcenko-Pastur distribution, while noise variances in signal-dominated eigenmodes still follow the uniform distribution. Both the mathematical expectation of noise level in each eigenmode and an analytical formula of KLT filter noise reduction effect with a hard threshold were derived. Numerical simulations agree with our theoretical analysis. The noise variance of an eigenmode may deviate more than 60% from the uniform distribution. These results can be modified slightly, and generalized to non-IID (independently and identically-distributed) noise scenario. Magnetic resonance imaging experiments show that the generalized result is applicable and accurate. These generic results can help us understand the noise behavior in the KLT and related topics.\",\"PeriodicalId\":90900,\"journal\":{\"name\":\"Journal of health & medical informatics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of health & medical informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7420.1000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of health & medical informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7420.1000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Karhunen-Loeve变换(KLT)在信号处理中有着广泛的应用。然而,普遍接受的结果是,噪声在所有特征模态中均匀分布是不准确的。我们应用随机矩阵理论的一个结果来理解KLT特征模态中的渐近噪声分布。仅含噪声特征模态的噪声方差服从Marcenko-Pastur分布,而信号占主导的特征模态的噪声方差仍然服从均匀分布。推导了各特征模噪声级的数学期望和带硬阈值的KLT滤波器降噪效果的解析公式。数值模拟结果与理论分析一致。特征模态的噪声方差可能偏离均匀分布的60%以上。这些结果可以稍加修改,并推广到非iid(独立和同分布)噪声场景。磁共振成像实验表明,广义结果是适用的、准确的。这些通用结果可以帮助我们理解KLT中的噪声行为和相关主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Asymptotic Noise Distribution in Karhunen-Loeve Transform Eigenmodes
Karhunen-Loeve Transform (KLT) is widely used in signal processing. Yet the well-accepted result is that, the noise is uniformly distributed in all eigenmodes is not accurate. We apply a result of the random matrix theory to understand the asymptotic noise distribution in KLT eigenmodes. Noise variances in noise-only eigenmodes follow the Marcenko-Pastur distribution, while noise variances in signal-dominated eigenmodes still follow the uniform distribution. Both the mathematical expectation of noise level in each eigenmode and an analytical formula of KLT filter noise reduction effect with a hard threshold were derived. Numerical simulations agree with our theoretical analysis. The noise variance of an eigenmode may deviate more than 60% from the uniform distribution. These results can be modified slightly, and generalized to non-IID (independently and identically-distributed) noise scenario. Magnetic resonance imaging experiments show that the generalized result is applicable and accurate. These generic results can help us understand the noise behavior in the KLT and related topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信