{"title":"一元函数的极值问题","authors":"T. Sugawa, Li-Mei Wang","doi":"10.4036/iis.2019.a.04","DOIUrl":null,"url":null,"abstract":"For a real constant $b,$ we give sharp estimates of $\\log|f(z)/z|+b\\arg[f(z)/z]$ for subclasses of normalized univalent functions $f$ on the unit disk.","PeriodicalId":91087,"journal":{"name":"Interdisciplinary information sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extremal Problem for Univalent Functions\",\"authors\":\"T. Sugawa, Li-Mei Wang\",\"doi\":\"10.4036/iis.2019.a.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a real constant $b,$ we give sharp estimates of $\\\\log|f(z)/z|+b\\\\arg[f(z)/z]$ for subclasses of normalized univalent functions $f$ on the unit disk.\",\"PeriodicalId\":91087,\"journal\":{\"name\":\"Interdisciplinary information sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary information sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4036/iis.2019.a.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary information sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4036/iis.2019.a.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For a real constant $b,$ we give sharp estimates of $\log|f(z)/z|+b\arg[f(z)/z]$ for subclasses of normalized univalent functions $f$ on the unit disk.