数据科学中多变量分析的要素

M. S. Baladram, N. Obata
{"title":"数据科学中多变量分析的要素","authors":"M. S. Baladram, N. Obata","doi":"10.4036/iis.2020.a.02","DOIUrl":null,"url":null,"abstract":"These lecture notes provide a quick review of basic concepts in statistical analysis and probability theory for data science. We survey general description of singleand multi-variate data, and derive regression models by means of the method of least squares. As theoretical backgrounds we provide basic knowledge of probability theory which is indispensable for further study of mathematical statistics and probability models. We show that the regression line for a multi-variate normal distribution coincides with the regression curve defined through the conditional density function. In Appendix matrix operations are quickly reviewed. These notes are based on the lectures delivered in Graduate Program in Data Science (GP-DS) and Data Sciences Program (DSP) at Tohoku University in 2018–2020.","PeriodicalId":91087,"journal":{"name":"Interdisciplinary information sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Elements of Multi-Variate Analysis for Data Science\",\"authors\":\"M. S. Baladram, N. Obata\",\"doi\":\"10.4036/iis.2020.a.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"These lecture notes provide a quick review of basic concepts in statistical analysis and probability theory for data science. We survey general description of singleand multi-variate data, and derive regression models by means of the method of least squares. As theoretical backgrounds we provide basic knowledge of probability theory which is indispensable for further study of mathematical statistics and probability models. We show that the regression line for a multi-variate normal distribution coincides with the regression curve defined through the conditional density function. In Appendix matrix operations are quickly reviewed. These notes are based on the lectures delivered in Graduate Program in Data Science (GP-DS) and Data Sciences Program (DSP) at Tohoku University in 2018–2020.\",\"PeriodicalId\":91087,\"journal\":{\"name\":\"Interdisciplinary information sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary information sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4036/iis.2020.a.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary information sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4036/iis.2020.a.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这些课堂讲稿快速回顾了数据科学中统计分析和概率论的基本概念。本文概述了单变量和多变量数据的一般描述,并利用最小二乘法推导了回归模型。作为理论背景,我们提供了概率论的基本知识,这对进一步研究数理统计和概率模型是必不可少的。我们证明了多元正态分布的回归线与通过条件密度函数定义的回归曲线重合。在附录中,对矩阵运算进行了快速回顾。这些笔记是基于2018-2020年东北大学数据科学研究生课程(GP-DS)和数据科学课程(DSP)的讲座。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Elements of Multi-Variate Analysis for Data Science
These lecture notes provide a quick review of basic concepts in statistical analysis and probability theory for data science. We survey general description of singleand multi-variate data, and derive regression models by means of the method of least squares. As theoretical backgrounds we provide basic knowledge of probability theory which is indispensable for further study of mathematical statistics and probability models. We show that the regression line for a multi-variate normal distribution coincides with the regression curve defined through the conditional density function. In Appendix matrix operations are quickly reviewed. These notes are based on the lectures delivered in Graduate Program in Data Science (GP-DS) and Data Sciences Program (DSP) at Tohoku University in 2018–2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信