从初始状态连续体走向平衡的二元马尔可夫过程

Jinsik Mok, Hyoung-In Lee
{"title":"从初始状态连续体走向平衡的二元马尔可夫过程","authors":"Jinsik Mok, Hyoung-In Lee","doi":"10.4036/IIS.2017.A.06","DOIUrl":null,"url":null,"abstract":"Dynamics of two-member Markov processes is formulated based on the binomial probability. Sets of initial states are then sought such that the final state reaches an equilibrium. On the two-parameter phase plane, such initial states are found to exhibit diverse geometric configurations depending on the source probability. Those initial-state boundaries undergo phase transitions ranging over pills, stripes, circles, ellipses, lemons, and even fuzzy shapes. These results are quite helpful in understanding several physical phenomena involving photons, electrons, and atoms. For convenience of discussion, deformations of vortices are taken as an example.","PeriodicalId":91087,"journal":{"name":"Interdisciplinary information sciences","volume":"23 1","pages":"39-49"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Member Markov Processes toward an Equilibrium from a Continuum of Initial States\",\"authors\":\"Jinsik Mok, Hyoung-In Lee\",\"doi\":\"10.4036/IIS.2017.A.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamics of two-member Markov processes is formulated based on the binomial probability. Sets of initial states are then sought such that the final state reaches an equilibrium. On the two-parameter phase plane, such initial states are found to exhibit diverse geometric configurations depending on the source probability. Those initial-state boundaries undergo phase transitions ranging over pills, stripes, circles, ellipses, lemons, and even fuzzy shapes. These results are quite helpful in understanding several physical phenomena involving photons, electrons, and atoms. For convenience of discussion, deformations of vortices are taken as an example.\",\"PeriodicalId\":91087,\"journal\":{\"name\":\"Interdisciplinary information sciences\",\"volume\":\"23 1\",\"pages\":\"39-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary information sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4036/IIS.2017.A.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary information sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4036/IIS.2017.A.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二元马尔可夫过程的动力学是基于二项概率的。然后寻找一组初始状态,使最终状态达到平衡。在两参数相平面上,这些初始状态随源概率的不同呈现出不同的几何构型。这些初始状态边界经历了药丸、条纹、圆圈、椭圆、柠檬甚至模糊形状的相变。这些结果对理解涉及光子、电子和原子的几种物理现象很有帮助。为方便讨论,以涡旋变形为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Member Markov Processes toward an Equilibrium from a Continuum of Initial States
Dynamics of two-member Markov processes is formulated based on the binomial probability. Sets of initial states are then sought such that the final state reaches an equilibrium. On the two-parameter phase plane, such initial states are found to exhibit diverse geometric configurations depending on the source probability. Those initial-state boundaries undergo phase transitions ranging over pills, stripes, circles, ellipses, lemons, and even fuzzy shapes. These results are quite helpful in understanding several physical phenomena involving photons, electrons, and atoms. For convenience of discussion, deformations of vortices are taken as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信