{"title":"非线性偏微分方程的单元问题及其在均匀化中的应用","authors":"Hiroyoshi Mitake","doi":"10.4036/IIS.2018.A.02","DOIUrl":null,"url":null,"abstract":"In this talk, I will give an introductory talk on the homogenization for fully nonlinear PDEs. To prove “homogenization” in a periodic setting, it is well-known that the cell problem, which is a kind of nonlinear eigenvalue problems, plays an important role. In the talk, I will show some of basic arguments in Lions-Papanicolaou-Varadhan (1987), and Evans (1992) and prove the homogenization in a periodic setting by using a perturbed test function method introduced in Evans (1989) as a starting point. In the second half of the talk, I will show some of recent development in Davini-FathiIturriaga-Zavidovique (2016), Mitake-Tran (2017) on the selection problem appearing in the cell problem. These results did not currently have a clear application to homogenization, but may have potential. I finally refer to a lecture note [6] on this direction. [1] A. Davini, A. Fathi, R. Iturriaga, M. Zavidovique, Convergence of the solutions of the discounted equation, Invent. Math. 206 (1) (2016) 29-55. [2] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, 359-375. [3] L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 3-4, 245-265. [4] P.-L. Lions, G. Papanicolaou, S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, unpublished work (1987). [5] H. Mitake, H. V. Tran, Selection problems for a discount degenerate viscous Hamilton-Jacobi equation, Adv. Math. 306 (2017), 684-703. [6] N. Q. Le, H. Mitake and H. V. Tran, Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampere equations, to appear in Lecture Notes in Mathematics, Springer.","PeriodicalId":91087,"journal":{"name":"Interdisciplinary information sciences","volume":"24 1","pages":"49-58"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Cell Problems for Nonlinear PDES and Its Application to Homogenization\",\"authors\":\"Hiroyoshi Mitake\",\"doi\":\"10.4036/IIS.2018.A.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, I will give an introductory talk on the homogenization for fully nonlinear PDEs. To prove “homogenization” in a periodic setting, it is well-known that the cell problem, which is a kind of nonlinear eigenvalue problems, plays an important role. In the talk, I will show some of basic arguments in Lions-Papanicolaou-Varadhan (1987), and Evans (1992) and prove the homogenization in a periodic setting by using a perturbed test function method introduced in Evans (1989) as a starting point. In the second half of the talk, I will show some of recent development in Davini-FathiIturriaga-Zavidovique (2016), Mitake-Tran (2017) on the selection problem appearing in the cell problem. These results did not currently have a clear application to homogenization, but may have potential. I finally refer to a lecture note [6] on this direction. [1] A. Davini, A. Fathi, R. Iturriaga, M. Zavidovique, Convergence of the solutions of the discounted equation, Invent. Math. 206 (1) (2016) 29-55. [2] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, 359-375. [3] L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 3-4, 245-265. [4] P.-L. Lions, G. Papanicolaou, S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, unpublished work (1987). [5] H. Mitake, H. V. Tran, Selection problems for a discount degenerate viscous Hamilton-Jacobi equation, Adv. Math. 306 (2017), 684-703. [6] N. Q. Le, H. Mitake and H. V. Tran, Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampere equations, to appear in Lecture Notes in Mathematics, Springer.\",\"PeriodicalId\":91087,\"journal\":{\"name\":\"Interdisciplinary information sciences\",\"volume\":\"24 1\",\"pages\":\"49-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary information sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4036/IIS.2018.A.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary information sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4036/IIS.2018.A.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这次演讲中,我将对全非线性偏微分方程的均质化进行介绍。为了证明周期条件下的“均匀性”,众所周知,单元问题作为一种非线性特征值问题起着重要的作用。在演讲中,我将展示Lions-Papanicolaou-Varadhan(1987)和Evans(1992)中的一些基本论点,并使用Evans(1989)中引入的摄动测试函数方法作为起点,证明周期设置中的均匀化。在演讲的后半部分,我将展示Davini-FathiIturriaga-Zavidovique (2016), Mitake-Tran(2017)关于细胞问题中出现的选择问题的一些最新进展。这些结果目前还没有明确的应用于均质化,但可能有潜力。关于这个方向,我最后参考了讲义b[6]。[10]张建军,张建军,张建军,张建军,张建军,张建军,张建军,张建军,张建军。数学。206(1)(2016)29-55。[10]李志强,张志强,非线性PDE黏度解的微扰测试函数法,工程力学与工程学报。Soc。爱丁堡教派,第111(1989)号。3 - 4, 359 - 375。[10]李志强,一类全非线性偏微分方程的周期均匀化,吉林大学学报。Soc。爱丁堡教派A 120(1992),编号。3 - 4, 245 - 265。[4] p.l.。Lions, G. Papanicolaou, S. R. S. Varadhan, Hamilton-Jacobi方程的均匀化,未发表的作品(1987)。[10]陈宏伟,陈宏伟,张建军,一种基于线性回归的Hamilton-Jacobi方程求解方法,数学学报,36(2017),684- 783。[1]李n . Q.,三竹和陈宏伟,Hamilton-Jacobi方程和线性化Monge-Ampere方程的动力学和几何方面,出现在数学讲义中,[10]。
On Cell Problems for Nonlinear PDES and Its Application to Homogenization
In this talk, I will give an introductory talk on the homogenization for fully nonlinear PDEs. To prove “homogenization” in a periodic setting, it is well-known that the cell problem, which is a kind of nonlinear eigenvalue problems, plays an important role. In the talk, I will show some of basic arguments in Lions-Papanicolaou-Varadhan (1987), and Evans (1992) and prove the homogenization in a periodic setting by using a perturbed test function method introduced in Evans (1989) as a starting point. In the second half of the talk, I will show some of recent development in Davini-FathiIturriaga-Zavidovique (2016), Mitake-Tran (2017) on the selection problem appearing in the cell problem. These results did not currently have a clear application to homogenization, but may have potential. I finally refer to a lecture note [6] on this direction. [1] A. Davini, A. Fathi, R. Iturriaga, M. Zavidovique, Convergence of the solutions of the discounted equation, Invent. Math. 206 (1) (2016) 29-55. [2] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, 359-375. [3] L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 3-4, 245-265. [4] P.-L. Lions, G. Papanicolaou, S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, unpublished work (1987). [5] H. Mitake, H. V. Tran, Selection problems for a discount degenerate viscous Hamilton-Jacobi equation, Adv. Math. 306 (2017), 684-703. [6] N. Q. Le, H. Mitake and H. V. Tran, Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampere equations, to appear in Lecture Notes in Mathematics, Springer.