{"title":"化学修饰的糖胺聚糖的详细结构表征对于解释潜在的生物效应是绝对必要的","authors":"Katharina Lemmnitzer, J. Schiller","doi":"10.4172/2153-0637.1000E122","DOIUrl":null,"url":null,"abstract":"The extracellular matrix (ECM) is a complex, highly organized tissue that is omnipresent in all vertebrates. Although the ECM is studied since many years by biochemical and biophysical methods [1] from the viewpoint of basic sciences, the increasing interest in ECM is nowadays coming from the considerable medical relevance of the ECM [2] and the increasing relevance of “regenerative medicine” [3]. In addition to obvious injuries such as skin burns, bone fractures, or mechanical cartilage injuries, many ECM-related diseases are also accompanied by inflammatory processes. Physicians define the “cardinal” symptoms of inflammation as the occurrence of pain, swelling, redness, heat, and loss of tissue function. From a more (bio) chemical view point, however, inflammatory processes are initiated by the infiltration of typical inflammation cells such as macrophages or neutrophils: these cells generate upon stimulation “reactive oxygen species” (ROS) such as hydroxyl radicals (HO•) or hypochlorous acid (HOCl) in addition to the release of a multitude of proteolytic enzymes such as elastase or collagenase which are all capable of degrading the different components of the ECM [4]. Despite the significant socioeconomic relevance [4], there is so far no perfect cure of ECM-related diseases!","PeriodicalId":89585,"journal":{"name":"Journal of glycomics & lipidomics","volume":"4 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Detailed Structural Characterization of Chemically Modified Glycosaminoglycans is Absolutely Essential to Explain Potential Biological Effects\",\"authors\":\"Katharina Lemmnitzer, J. Schiller\",\"doi\":\"10.4172/2153-0637.1000E122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extracellular matrix (ECM) is a complex, highly organized tissue that is omnipresent in all vertebrates. Although the ECM is studied since many years by biochemical and biophysical methods [1] from the viewpoint of basic sciences, the increasing interest in ECM is nowadays coming from the considerable medical relevance of the ECM [2] and the increasing relevance of “regenerative medicine” [3]. In addition to obvious injuries such as skin burns, bone fractures, or mechanical cartilage injuries, many ECM-related diseases are also accompanied by inflammatory processes. Physicians define the “cardinal” symptoms of inflammation as the occurrence of pain, swelling, redness, heat, and loss of tissue function. From a more (bio) chemical view point, however, inflammatory processes are initiated by the infiltration of typical inflammation cells such as macrophages or neutrophils: these cells generate upon stimulation “reactive oxygen species” (ROS) such as hydroxyl radicals (HO•) or hypochlorous acid (HOCl) in addition to the release of a multitude of proteolytic enzymes such as elastase or collagenase which are all capable of degrading the different components of the ECM [4]. Despite the significant socioeconomic relevance [4], there is so far no perfect cure of ECM-related diseases!\",\"PeriodicalId\":89585,\"journal\":{\"name\":\"Journal of glycomics & lipidomics\",\"volume\":\"4 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of glycomics & lipidomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2153-0637.1000E122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of glycomics & lipidomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-0637.1000E122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Detailed Structural Characterization of Chemically Modified Glycosaminoglycans is Absolutely Essential to Explain Potential Biological Effects
The extracellular matrix (ECM) is a complex, highly organized tissue that is omnipresent in all vertebrates. Although the ECM is studied since many years by biochemical and biophysical methods [1] from the viewpoint of basic sciences, the increasing interest in ECM is nowadays coming from the considerable medical relevance of the ECM [2] and the increasing relevance of “regenerative medicine” [3]. In addition to obvious injuries such as skin burns, bone fractures, or mechanical cartilage injuries, many ECM-related diseases are also accompanied by inflammatory processes. Physicians define the “cardinal” symptoms of inflammation as the occurrence of pain, swelling, redness, heat, and loss of tissue function. From a more (bio) chemical view point, however, inflammatory processes are initiated by the infiltration of typical inflammation cells such as macrophages or neutrophils: these cells generate upon stimulation “reactive oxygen species” (ROS) such as hydroxyl radicals (HO•) or hypochlorous acid (HOCl) in addition to the release of a multitude of proteolytic enzymes such as elastase or collagenase which are all capable of degrading the different components of the ECM [4]. Despite the significant socioeconomic relevance [4], there is so far no perfect cure of ECM-related diseases!