人类远端肠道微生物群中碳水化合物活性酶的发现

Abbott Dw
{"title":"人类远端肠道微生物群中碳水化合物活性酶的发现","authors":"Abbott Dw","doi":"10.4172/2153-0637.1000119","DOIUrl":null,"url":null,"abstract":"Next-generation sequencing of bacterial communities such as the human distal gut microbiome has generated a vast metagenomic sequence space. A common feature emerging from these analyses is that the genomes of intestinal bacteria are enriched with genes dedicated to the metabolism of indigestible dietary polysaccharides. Although cultureindependent techniques are unparalleled in their ability to probe and catalog carbohydrate active enzyme gene diversity within complex communities, downstream functional genomic approaches are still required to elucidate the mechanisms by which these enzymes and pathways function. Harnessing the potential of biocatalytic repositories, such as the human distal gut microbiome, will continue to facilitate the informed discovery of potent enzymes and help drive innovation towards the sustainable conversion of plant cell wall biomass.","PeriodicalId":89585,"journal":{"name":"Journal of glycomics & lipidomics","volume":"4 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2153-0637.1000119","citationCount":"2","resultStr":"{\"title\":\"Informed Carbohydrate Active Enzyme Discovery within the Human Distal Gut Microbiome\",\"authors\":\"Abbott Dw\",\"doi\":\"10.4172/2153-0637.1000119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next-generation sequencing of bacterial communities such as the human distal gut microbiome has generated a vast metagenomic sequence space. A common feature emerging from these analyses is that the genomes of intestinal bacteria are enriched with genes dedicated to the metabolism of indigestible dietary polysaccharides. Although cultureindependent techniques are unparalleled in their ability to probe and catalog carbohydrate active enzyme gene diversity within complex communities, downstream functional genomic approaches are still required to elucidate the mechanisms by which these enzymes and pathways function. Harnessing the potential of biocatalytic repositories, such as the human distal gut microbiome, will continue to facilitate the informed discovery of potent enzymes and help drive innovation towards the sustainable conversion of plant cell wall biomass.\",\"PeriodicalId\":89585,\"journal\":{\"name\":\"Journal of glycomics & lipidomics\",\"volume\":\"4 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2153-0637.1000119\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of glycomics & lipidomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2153-0637.1000119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of glycomics & lipidomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-0637.1000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

下一代细菌群落测序,如人类远端肠道微生物组,已经产生了巨大的宏基因组序列空间。从这些分析中出现的一个共同特征是,肠道细菌的基因组富含专门用于代谢不可消化的膳食多糖的基因。尽管培养独立技术在复杂群落中探测和编目碳水化合物活性酶基因多样性的能力是无与伦比的,但仍然需要下游功能基因组方法来阐明这些酶和途径的功能机制。利用生物催化库的潜力,如人类远端肠道微生物群,将继续促进有效酶的知情发现,并有助于推动创新,实现植物细胞壁生物量的可持续转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Informed Carbohydrate Active Enzyme Discovery within the Human Distal Gut Microbiome
Next-generation sequencing of bacterial communities such as the human distal gut microbiome has generated a vast metagenomic sequence space. A common feature emerging from these analyses is that the genomes of intestinal bacteria are enriched with genes dedicated to the metabolism of indigestible dietary polysaccharides. Although cultureindependent techniques are unparalleled in their ability to probe and catalog carbohydrate active enzyme gene diversity within complex communities, downstream functional genomic approaches are still required to elucidate the mechanisms by which these enzymes and pathways function. Harnessing the potential of biocatalytic repositories, such as the human distal gut microbiome, will continue to facilitate the informed discovery of potent enzymes and help drive innovation towards the sustainable conversion of plant cell wall biomass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信