Aruna Kilaru, P. Tamura, P. Garg, G. Isaac, D. Baxter, R. Duncan, R. Welti, P. Koulen, K. Chapman, B. Venables
{"title":"大鼠脑缺血/再灌注模型中n -酰基乙醇胺通路相关代谢物的变化","authors":"Aruna Kilaru, P. Tamura, P. Garg, G. Isaac, D. Baxter, R. Duncan, R. Welti, P. Koulen, K. Chapman, B. Venables","doi":"10.4172/2153-0637.1000101","DOIUrl":null,"url":null,"abstract":"In mammals, the endocannabinoid signaling pathway provides protective cellular responses to ischemia. Previous work demonstrated increases in long-chain N-acylethanolamines (NAE) in ischemia and suggested a protective role for NAE. Here, a targeted lipidomics approach was used to study comprehensive changes in the molecular composition and quantity of NAE metabolites in a rat model of controlled brain ischemia. Changes of NAE, its precursors, N-acylphosphatidylethanolamines (NAPE), major and minor phospholipids, and free fatty acids (FFA) were quantified in response to ischemia. The effect of intraperitoneal injection of N-palmitoylethanolamine (NAE 16:0) prior to ischemia on NAE metabolite and phospholipid profiles was measured. While ischemia, in general, resulted in elevated levels of N-acyl 16:0 and18:0 NAE, NAPE, and FFA species, pretreatment with NAE 16:0 reduced infarct volume, neurological behavioral deficits in rats, and FFA content in ischemic tissues. Pretreatment with NAE 16:0 did not affect the profiles of other NAE metabolites. These studies demonstrate the utility of a targeted lipidomics approach to measure complex and concomitant metabolic changes in response to ischemia. They suggest that the neuroprotective effects of exogenous NAE 16:0 and the reduction in inflammatory damage may be mediated by factors other than gross changes in brain NAE levels, such as modulation of transcriptional responses.","PeriodicalId":89585,"journal":{"name":"Journal of glycomics & lipidomics","volume":"1 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Changes in N-acylethanolamine Pathway Related Metabolites in a Rat Model of Cerebral Ischemia/Reperfusion.\",\"authors\":\"Aruna Kilaru, P. Tamura, P. Garg, G. Isaac, D. Baxter, R. Duncan, R. Welti, P. Koulen, K. Chapman, B. Venables\",\"doi\":\"10.4172/2153-0637.1000101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mammals, the endocannabinoid signaling pathway provides protective cellular responses to ischemia. Previous work demonstrated increases in long-chain N-acylethanolamines (NAE) in ischemia and suggested a protective role for NAE. Here, a targeted lipidomics approach was used to study comprehensive changes in the molecular composition and quantity of NAE metabolites in a rat model of controlled brain ischemia. Changes of NAE, its precursors, N-acylphosphatidylethanolamines (NAPE), major and minor phospholipids, and free fatty acids (FFA) were quantified in response to ischemia. The effect of intraperitoneal injection of N-palmitoylethanolamine (NAE 16:0) prior to ischemia on NAE metabolite and phospholipid profiles was measured. While ischemia, in general, resulted in elevated levels of N-acyl 16:0 and18:0 NAE, NAPE, and FFA species, pretreatment with NAE 16:0 reduced infarct volume, neurological behavioral deficits in rats, and FFA content in ischemic tissues. Pretreatment with NAE 16:0 did not affect the profiles of other NAE metabolites. These studies demonstrate the utility of a targeted lipidomics approach to measure complex and concomitant metabolic changes in response to ischemia. They suggest that the neuroprotective effects of exogenous NAE 16:0 and the reduction in inflammatory damage may be mediated by factors other than gross changes in brain NAE levels, such as modulation of transcriptional responses.\",\"PeriodicalId\":89585,\"journal\":{\"name\":\"Journal of glycomics & lipidomics\",\"volume\":\"1 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of glycomics & lipidomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2153-0637.1000101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of glycomics & lipidomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-0637.1000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Changes in N-acylethanolamine Pathway Related Metabolites in a Rat Model of Cerebral Ischemia/Reperfusion.
In mammals, the endocannabinoid signaling pathway provides protective cellular responses to ischemia. Previous work demonstrated increases in long-chain N-acylethanolamines (NAE) in ischemia and suggested a protective role for NAE. Here, a targeted lipidomics approach was used to study comprehensive changes in the molecular composition and quantity of NAE metabolites in a rat model of controlled brain ischemia. Changes of NAE, its precursors, N-acylphosphatidylethanolamines (NAPE), major and minor phospholipids, and free fatty acids (FFA) were quantified in response to ischemia. The effect of intraperitoneal injection of N-palmitoylethanolamine (NAE 16:0) prior to ischemia on NAE metabolite and phospholipid profiles was measured. While ischemia, in general, resulted in elevated levels of N-acyl 16:0 and18:0 NAE, NAPE, and FFA species, pretreatment with NAE 16:0 reduced infarct volume, neurological behavioral deficits in rats, and FFA content in ischemic tissues. Pretreatment with NAE 16:0 did not affect the profiles of other NAE metabolites. These studies demonstrate the utility of a targeted lipidomics approach to measure complex and concomitant metabolic changes in response to ischemia. They suggest that the neuroprotective effects of exogenous NAE 16:0 and the reduction in inflammatory damage may be mediated by factors other than gross changes in brain NAE levels, such as modulation of transcriptional responses.