通过分段和神经网络模型的跨线性电路实现增强传感器线性度

Q3 Engineering
Sundararajan Seenivasaan, Naduvil Madhusoodanan Kottarthil
{"title":"通过分段和神经网络模型的跨线性电路实现增强传感器线性度","authors":"Sundararajan Seenivasaan, Naduvil Madhusoodanan Kottarthil","doi":"10.3934/electreng.2023012","DOIUrl":null,"url":null,"abstract":"The performance of the control system relies on the linearity of the sensor, which can be influenced by various factors such as aging and alterations in material properties. However, current sensor linearization techniques, such as utilizing neural networks and piecewise regression models in the digital domain, suffer from issues like errors, excessive power consumption, and slow response times. To address these constraints, this investigation employs a translinear based analog circuit to realize neural networks and piecewise regression models for the purpose of linearizing the selected sensors. A conventional feed-forward back propagation network is constructed and trained using the Levenberg-Marquardt algorithm. The developed linearization algorithm is implemented using a translinear circuit, where the trained weights, biases, and sensor output are fed as input current sources into the current-mode circuit. Further in this work, the piecewise regression model is designed and implemented using a translinear circuit and the breakpoint is determined using 'R' language. The simulation results indicate that the implementation of the current-mode circuit with metal-oxide-semiconductor field-effect transistors (MOSFETs) for the neural network algorithm leads to a substantial reduction in full-scale error as compared to the piecewise current mode model. Additionally, a performance analysis was conducted to compare the utilization of current-mode circuits with digital approaches for the linearization of sensors. The proposed translinear implementation surpasses the other researcher's work by delivering notable results. It showcases a significant improvement in linearity, ranging from 60% to 80%, for the selected sensors. Furthermore, the proposed implementation excels not only in linearity but also in terms of both response speed and power consumption. The improvement in the linearity of the sensor can be enhanced further by replacing the MOSFETs with bipolar transistors or any versatile materials such as gallium arsenide or gallium nitride-based transistors.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing sensor linearity through the translinear circuit implementation of piecewise and neural network models\",\"authors\":\"Sundararajan Seenivasaan, Naduvil Madhusoodanan Kottarthil\",\"doi\":\"10.3934/electreng.2023012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the control system relies on the linearity of the sensor, which can be influenced by various factors such as aging and alterations in material properties. However, current sensor linearization techniques, such as utilizing neural networks and piecewise regression models in the digital domain, suffer from issues like errors, excessive power consumption, and slow response times. To address these constraints, this investigation employs a translinear based analog circuit to realize neural networks and piecewise regression models for the purpose of linearizing the selected sensors. A conventional feed-forward back propagation network is constructed and trained using the Levenberg-Marquardt algorithm. The developed linearization algorithm is implemented using a translinear circuit, where the trained weights, biases, and sensor output are fed as input current sources into the current-mode circuit. Further in this work, the piecewise regression model is designed and implemented using a translinear circuit and the breakpoint is determined using 'R' language. The simulation results indicate that the implementation of the current-mode circuit with metal-oxide-semiconductor field-effect transistors (MOSFETs) for the neural network algorithm leads to a substantial reduction in full-scale error as compared to the piecewise current mode model. Additionally, a performance analysis was conducted to compare the utilization of current-mode circuits with digital approaches for the linearization of sensors. The proposed translinear implementation surpasses the other researcher's work by delivering notable results. It showcases a significant improvement in linearity, ranging from 60% to 80%, for the selected sensors. Furthermore, the proposed implementation excels not only in linearity but also in terms of both response speed and power consumption. The improvement in the linearity of the sensor can be enhanced further by replacing the MOSFETs with bipolar transistors or any versatile materials such as gallium arsenide or gallium nitride-based transistors.\",\"PeriodicalId\":36329,\"journal\":{\"name\":\"AIMS Electronics and Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Electronics and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/electreng.2023012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/electreng.2023012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

控制系统的性能依赖于传感器的线性度,而线性度会受到各种因素的影响,如老化和材料性能的变化。然而,目前的传感器线性化技术,如在数字领域利用神经网络和分段回归模型,存在诸如误差、过度功耗和慢响应时间等问题。为了解决这些限制,本研究采用基于跨线性的模拟电路来实现神经网络和分段回归模型,以线性化所选传感器。利用Levenberg-Marquardt算法构造了一个传统的前馈反向传播网络并进行了训练。所开发的线性化算法使用一个跨线性电路实现,其中训练的权重、偏置和传感器输出作为输入电流源馈送到电流模式电路中。在这项工作的进一步,分段回归模型的设计和实现使用一个跨线性电路和断点确定使用'R'语言。仿真结果表明,与分段电流模式模型相比,利用金属氧化物半导体场效应晶体管(mosfet)实现神经网络算法的电流模式电路大大降低了全尺寸误差。此外,还进行了性能分析,以比较电流模式电路与数字方法对传感器线性化的利用。提出的跨线性实现通过提供显着的结果超越了其他研究人员的工作。它显示了所选传感器的线性度的显着改善,范围从60%到80%。此外,提出的实现不仅在线性方面,而且在响应速度和功耗方面都很好。通过用双极晶体管或任何通用材料(如砷化镓或氮化镓基晶体管)取代mosfet,可以进一步提高传感器的线性度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing sensor linearity through the translinear circuit implementation of piecewise and neural network models
The performance of the control system relies on the linearity of the sensor, which can be influenced by various factors such as aging and alterations in material properties. However, current sensor linearization techniques, such as utilizing neural networks and piecewise regression models in the digital domain, suffer from issues like errors, excessive power consumption, and slow response times. To address these constraints, this investigation employs a translinear based analog circuit to realize neural networks and piecewise regression models for the purpose of linearizing the selected sensors. A conventional feed-forward back propagation network is constructed and trained using the Levenberg-Marquardt algorithm. The developed linearization algorithm is implemented using a translinear circuit, where the trained weights, biases, and sensor output are fed as input current sources into the current-mode circuit. Further in this work, the piecewise regression model is designed and implemented using a translinear circuit and the breakpoint is determined using 'R' language. The simulation results indicate that the implementation of the current-mode circuit with metal-oxide-semiconductor field-effect transistors (MOSFETs) for the neural network algorithm leads to a substantial reduction in full-scale error as compared to the piecewise current mode model. Additionally, a performance analysis was conducted to compare the utilization of current-mode circuits with digital approaches for the linearization of sensors. The proposed translinear implementation surpasses the other researcher's work by delivering notable results. It showcases a significant improvement in linearity, ranging from 60% to 80%, for the selected sensors. Furthermore, the proposed implementation excels not only in linearity but also in terms of both response speed and power consumption. The improvement in the linearity of the sensor can be enhanced further by replacing the MOSFETs with bipolar transistors or any versatile materials such as gallium arsenide or gallium nitride-based transistors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Electronics and Electrical Engineering
AIMS Electronics and Electrical Engineering Engineering-Control and Systems Engineering
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信