M. Dilshad, M. Akram, M. Nasiruzzaman, D. Filali, A. Khidir
{"title":"拆分变分包含与不动点问题的自适应惯性Yosida逼近迭代算法","authors":"M. Dilshad, M. Akram, M. Nasiruzzaman, D. Filali, A. Khidir","doi":"10.3934/math.2023651","DOIUrl":null,"url":null,"abstract":"In this paper, we present self-adaptive inertial iterative algorithms involving Yosida approximation to investigate a split variational inclusion problem (SVIP) and common solutions of a fixed point problem (FPP) and SVIP in Hilbert spaces. We analyze the weak convergence of the proposed iterative algorithm to explore the approximate solution of the SVIP and strong convergence to estimate the common solution of the SVIP and FPP under some mild suppositions. A numerical example is demonstrated to validate the theoretical findings, and comparison of our iterative methods with some known schemes is outlined.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive inertial Yosida approximation iterative algorithms for split variational inclusion and fixed point problems\",\"authors\":\"M. Dilshad, M. Akram, M. Nasiruzzaman, D. Filali, A. Khidir\",\"doi\":\"10.3934/math.2023651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present self-adaptive inertial iterative algorithms involving Yosida approximation to investigate a split variational inclusion problem (SVIP) and common solutions of a fixed point problem (FPP) and SVIP in Hilbert spaces. We analyze the weak convergence of the proposed iterative algorithm to explore the approximate solution of the SVIP and strong convergence to estimate the common solution of the SVIP and FPP under some mild suppositions. A numerical example is demonstrated to validate the theoretical findings, and comparison of our iterative methods with some known schemes is outlined.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023651\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023651","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Adaptive inertial Yosida approximation iterative algorithms for split variational inclusion and fixed point problems
In this paper, we present self-adaptive inertial iterative algorithms involving Yosida approximation to investigate a split variational inclusion problem (SVIP) and common solutions of a fixed point problem (FPP) and SVIP in Hilbert spaces. We analyze the weak convergence of the proposed iterative algorithm to explore the approximate solution of the SVIP and strong convergence to estimate the common solution of the SVIP and FPP under some mild suppositions. A numerical example is demonstrated to validate the theoretical findings, and comparison of our iterative methods with some known schemes is outlined.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.