薄膜中具有库仑定律的广义非牛顿流体解的强收敛性

IF 1.8 3区 数学 Q1 MATHEMATICS
Hana Taklit Lahlah, H. Benseridi, B. Cherif, M. Dilmi, S. Boulaaras, Rabab Alharbi
{"title":"薄膜中具有库仑定律的广义非牛顿流体解的强收敛性","authors":"Hana Taklit Lahlah, H. Benseridi, B. Cherif, M. Dilmi, S. Boulaaras, Rabab Alharbi","doi":"10.3934/math.2023635","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction. We assume that the fluid coefficients of the thin layer vary with respect to the thin layer parameter $ \\varepsilon $. We give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the strong convergence of the solution of a generalized non-Newtonian fluid with Coulomb law in a thin film\",\"authors\":\"Hana Taklit Lahlah, H. Benseridi, B. Cherif, M. Dilmi, S. Boulaaras, Rabab Alharbi\",\"doi\":\"10.3934/math.2023635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction. We assume that the fluid coefficients of the thin layer vary with respect to the thin layer parameter $ \\\\varepsilon $. We give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023635\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023635","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究黏度随库仑摩擦服从幂律的非牛顿不可压缩流体的速度的强收敛性。我们假设薄层的流体系数随薄层参数$ \varepsilon $而变化。我们首先给出问题的描述和基本方程。然后给出了系统的功能框架。下一段留给主要的收敛结果。最后,我们给出了这些结果的详细证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the strong convergence of the solution of a generalized non-Newtonian fluid with Coulomb law in a thin film
The goal of this paper is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction. We assume that the fluid coefficients of the thin layer vary with respect to the thin layer parameter $ \varepsilon $. We give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信