分数阶lsamvy过程驱动的离散观测Cox-Ingersoll-Ross模型参数估计

IF 1.8 3区 数学 Q1 MATHEMATICS
Jiangrui Ding, Chao Wei
{"title":"分数阶lsamvy过程驱动的离散观测Cox-Ingersoll-Ross模型参数估计","authors":"Jiangrui Ding, Chao Wei","doi":"10.3934/math.2023613","DOIUrl":null,"url":null,"abstract":"This paper deals with least squares estimation for the Cox–Ingersoll–Ross model with fractional Lévy noise from discrete observations. The contrast function is given to obtain the least squares estimators. The consistency and asymptotic distribution of estimators are derived when a small dispersion coefficient $\\varepsilon \\to 0$, $n \\to \\infty $, $\\varepsilon {n^{\\frac{1}{2} - d}} \\to 0$, and $n\\varepsilon \\to \\infty $ simultaneously.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation for discretely observed Cox–Ingersoll–Ross model driven by fractional Lévy processes\",\"authors\":\"Jiangrui Ding, Chao Wei\",\"doi\":\"10.3934/math.2023613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with least squares estimation for the Cox–Ingersoll–Ross model with fractional Lévy noise from discrete observations. The contrast function is given to obtain the least squares estimators. The consistency and asymptotic distribution of estimators are derived when a small dispersion coefficient $\\\\varepsilon \\\\to 0$, $n \\\\to \\\\infty $, $\\\\varepsilon {n^{\\\\frac{1}{2} - d}} \\\\to 0$, and $n\\\\varepsilon \\\\to \\\\infty $ simultaneously.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023613\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023613","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了离散观测值中含有分数阶lsamvy噪声的Cox-Ingersoll-Ross模型的最小二乘估计。给出了最小二乘估计的对比函数。当离散系数分别为$\varepsilon \to 0$、$n \to \infty $、$\varepsilon {n^{\frac{1}{2} - d}} \to 0$和$n\varepsilon \to \infty $时,得到了估计量的相合性和渐近分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation for discretely observed Cox–Ingersoll–Ross model driven by fractional Lévy processes
This paper deals with least squares estimation for the Cox–Ingersoll–Ross model with fractional Lévy noise from discrete observations. The contrast function is given to obtain the least squares estimators. The consistency and asymptotic distribution of estimators are derived when a small dispersion coefficient $\varepsilon \to 0$, $n \to \infty $, $\varepsilon {n^{\frac{1}{2} - d}} \to 0$, and $n\varepsilon \to \infty $ simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信