{"title":"分数阶lsamvy过程驱动的离散观测Cox-Ingersoll-Ross模型参数估计","authors":"Jiangrui Ding, Chao Wei","doi":"10.3934/math.2023613","DOIUrl":null,"url":null,"abstract":"This paper deals with least squares estimation for the Cox–Ingersoll–Ross model with fractional Lévy noise from discrete observations. The contrast function is given to obtain the least squares estimators. The consistency and asymptotic distribution of estimators are derived when a small dispersion coefficient $\\varepsilon \\to 0$, $n \\to \\infty $, $\\varepsilon {n^{\\frac{1}{2} - d}} \\to 0$, and $n\\varepsilon \\to \\infty $ simultaneously.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation for discretely observed Cox–Ingersoll–Ross model driven by fractional Lévy processes\",\"authors\":\"Jiangrui Ding, Chao Wei\",\"doi\":\"10.3934/math.2023613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with least squares estimation for the Cox–Ingersoll–Ross model with fractional Lévy noise from discrete observations. The contrast function is given to obtain the least squares estimators. The consistency and asymptotic distribution of estimators are derived when a small dispersion coefficient $\\\\varepsilon \\\\to 0$, $n \\\\to \\\\infty $, $\\\\varepsilon {n^{\\\\frac{1}{2} - d}} \\\\to 0$, and $n\\\\varepsilon \\\\to \\\\infty $ simultaneously.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023613\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023613","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Parameter estimation for discretely observed Cox–Ingersoll–Ross model driven by fractional Lévy processes
This paper deals with least squares estimation for the Cox–Ingersoll–Ross model with fractional Lévy noise from discrete observations. The contrast function is given to obtain the least squares estimators. The consistency and asymptotic distribution of estimators are derived when a small dispersion coefficient $\varepsilon \to 0$, $n \to \infty $, $\varepsilon {n^{\frac{1}{2} - d}} \to 0$, and $n\varepsilon \to \infty $ simultaneously.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.