包含除数函数的等差数列的指数和

IF 1.8 3区 数学 Q1 MATHEMATICS
Rui Zhang, Y. Li, Xiao-Hui Yan
{"title":"包含除数函数的等差数列的指数和","authors":"Rui Zhang, Y. Li, Xiao-Hui Yan","doi":"10.3934/math.2023561","DOIUrl":null,"url":null,"abstract":"Let $ \\phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \\phi^{(j)}(x)\\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \\sum\\limits_{n\\ \\equiv\\ l\\ mod\\ q}d_3(n)\\phi\\left(\\frac{n}{X}\\right)e\\left(\\frac{3\\sqrt[3]{kn}}{q}\\right) $.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential sums involving the divisor function over arithmetic progressions\",\"authors\":\"Rui Zhang, Y. Li, Xiao-Hui Yan\",\"doi\":\"10.3934/math.2023561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ \\\\phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \\\\phi^{(j)}(x)\\\\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \\\\sum\\\\limits_{n\\\\ \\\\equiv\\\\ l\\\\ mod\\\\ q}d_3(n)\\\\phi\\\\left(\\\\frac{n}{X}\\\\right)e\\\\left(\\\\frac{3\\\\sqrt[3]{kn}}{q}\\\\right) $.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023561\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023561","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$ \phi(x) $为$ [1, 2] $上支持的平滑函数,其导数以$ \phi^{(j)}(x)\ll 1 $和$ d_3(n) $为界,表示将$ n $写成三因子乘积的方法的数目。我们得到了非线性指数和的渐近公式$ \sum\limits_{n\ \equiv\ l\ mod\ q}d_3(n)\phi\left(\frac{n}{X}\right)e\left(\frac{3\sqrt[3]{kn}}{q}\right) $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential sums involving the divisor function over arithmetic progressions
Let $ \phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \phi^{(j)}(x)\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \sum\limits_{n\ \equiv\ l\ mod\ q}d_3(n)\phi\left(\frac{n}{X}\right)e\left(\frac{3\sqrt[3]{kn}}{q}\right) $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信