{"title":"包含除数函数的等差数列的指数和","authors":"Rui Zhang, Y. Li, Xiao-Hui Yan","doi":"10.3934/math.2023561","DOIUrl":null,"url":null,"abstract":"Let $ \\phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \\phi^{(j)}(x)\\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \\sum\\limits_{n\\ \\equiv\\ l\\ mod\\ q}d_3(n)\\phi\\left(\\frac{n}{X}\\right)e\\left(\\frac{3\\sqrt[3]{kn}}{q}\\right) $.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential sums involving the divisor function over arithmetic progressions\",\"authors\":\"Rui Zhang, Y. Li, Xiao-Hui Yan\",\"doi\":\"10.3934/math.2023561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ \\\\phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \\\\phi^{(j)}(x)\\\\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \\\\sum\\\\limits_{n\\\\ \\\\equiv\\\\ l\\\\ mod\\\\ q}d_3(n)\\\\phi\\\\left(\\\\frac{n}{X}\\\\right)e\\\\left(\\\\frac{3\\\\sqrt[3]{kn}}{q}\\\\right) $.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023561\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023561","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exponential sums involving the divisor function over arithmetic progressions
Let $ \phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \phi^{(j)}(x)\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \sum\limits_{n\ \equiv\ l\ mod\ q}d_3(n)\phi\left(\frac{n}{X}\right)e\left(\frac{3\sqrt[3]{kn}}{q}\right) $.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.