{"title":"三次b样条法求解二次Riccati微分方程","authors":"O. Ala'yed, B. Batiha, Diala Alghazo, F. Ghanim","doi":"10.3934/math.2023483","DOIUrl":null,"url":null,"abstract":"The quadratic Riccati equations are first-order nonlinear differential equations with numerous applications in various applied science and engineering areas. Therefore, several numerical approaches have been derived to find their numerical solutions. This paper provided the approximate solution of the quadratic Riccati equation via the cubic b-spline method. The convergence analysis of the method is discussed. The efficiency and applicability of the proposed approach are verified through three numerical test problems. The obtained results are in good settlement with the exact solutions. Moreover, the numerical results indicate that the proposed cubic b-spline method attains a superior performance compared with some existing methods.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cubic B-Spline method for the solution of the quadratic Riccati differential equation\",\"authors\":\"O. Ala'yed, B. Batiha, Diala Alghazo, F. Ghanim\",\"doi\":\"10.3934/math.2023483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quadratic Riccati equations are first-order nonlinear differential equations with numerous applications in various applied science and engineering areas. Therefore, several numerical approaches have been derived to find their numerical solutions. This paper provided the approximate solution of the quadratic Riccati equation via the cubic b-spline method. The convergence analysis of the method is discussed. The efficiency and applicability of the proposed approach are verified through three numerical test problems. The obtained results are in good settlement with the exact solutions. Moreover, the numerical results indicate that the proposed cubic b-spline method attains a superior performance compared with some existing methods.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023483\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023483","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cubic B-Spline method for the solution of the quadratic Riccati differential equation
The quadratic Riccati equations are first-order nonlinear differential equations with numerous applications in various applied science and engineering areas. Therefore, several numerical approaches have been derived to find their numerical solutions. This paper provided the approximate solution of the quadratic Riccati equation via the cubic b-spline method. The convergence analysis of the method is discussed. The efficiency and applicability of the proposed approach are verified through three numerical test problems. The obtained results are in good settlement with the exact solutions. Moreover, the numerical results indicate that the proposed cubic b-spline method attains a superior performance compared with some existing methods.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.