$ \mathcal{H} $-张量的几个新判据及其应用

IF 1.8 3区 数学 Q1 MATHEMATICS
Wenbin Gong, Yaqiang Wang
{"title":"$ \\mathcal{H} $-张量的几个新判据及其应用","authors":"Wenbin Gong, Yaqiang Wang","doi":"10.3934/math.2023381","DOIUrl":null,"url":null,"abstract":"$ \\mathcal{H} $-tensors play a key role in identifying the positive definiteness of even-order real symmetric tensors. Some criteria have been given since it is difficult to judge whether a given tensor is an $ \\mathcal{H} $-tensor, and their range of judgment has been limited. In this paper, some new criteria, from an increasing constant $ k $ to scale the elements of a given tensor can expand the range of judgment, are obtained. Moreover, as an application of those new criteria, some sufficient conditions for judging positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical examples are presented to illustrate those new results.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some new criteria for judging $ \\\\mathcal{H} $-tensors and their applications\",\"authors\":\"Wenbin Gong, Yaqiang Wang\",\"doi\":\"10.3934/math.2023381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$ \\\\mathcal{H} $-tensors play a key role in identifying the positive definiteness of even-order real symmetric tensors. Some criteria have been given since it is difficult to judge whether a given tensor is an $ \\\\mathcal{H} $-tensor, and their range of judgment has been limited. In this paper, some new criteria, from an increasing constant $ k $ to scale the elements of a given tensor can expand the range of judgment, are obtained. Moreover, as an application of those new criteria, some sufficient conditions for judging positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical examples are presented to illustrate those new results.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023381\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023381","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

$ \mathcal{H} $-张量在确定偶阶实对称张量的正定性方面起着关键作用。由于很难判断给定张量是否为$ \mathcal{H} $-张量,因此给出了一些准则,并且它们的判断范围受到限制。本文给出了从一个递增的常数$ k $缩放给定张量的元素可以扩大判断范围的一些新准则。此外,作为这些新准则的应用,给出了判定偶阶实对称张量正确定性的几个充分条件。此外,还给出了一些数值算例来说明这些新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some new criteria for judging $ \mathcal{H} $-tensors and their applications
$ \mathcal{H} $-tensors play a key role in identifying the positive definiteness of even-order real symmetric tensors. Some criteria have been given since it is difficult to judge whether a given tensor is an $ \mathcal{H} $-tensor, and their range of judgment has been limited. In this paper, some new criteria, from an increasing constant $ k $ to scale the elements of a given tensor can expand the range of judgment, are obtained. Moreover, as an application of those new criteria, some sufficient conditions for judging positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical examples are presented to illustrate those new results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信