{"title":"具有次线性扰动和陡势井的kirchhoff型问题解的存在性和集中性","authors":"Shuwen He, Xiaobo Wen","doi":"10.3934/math.2023325","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear perturbation and steep potential well</p> <p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{eqnarray*} \\left \\{\\begin{array}{ll} -\\Big(a+b\\int_{\\mathbb{R}^3}|\\nabla u|^2dx\\Big)\\Delta u+\\lambda V(x)u = f(x,u)+g(x)|u|^{q-2}u\\ \\ \\mbox{in}\\ \\mathbb{R}^3,\\\\ \\\\ u\\in H^1(\\mathbb{R}^3), \\\\ \\end{array} \\right. \\label{1} \\end{eqnarray*} $\\end{document} </tex-math></disp-formula></p> <p>where $ a $ and $ b $ are positive constants, $ \\lambda > 0 $ is a parameter, $ 1 < q < 2 $, the potential $ V\\in C(\\mathbb{R}^3, \\mathbb{R}) $ and $ V^{-1}(0) $ has a nonempty interior. The functions $ f $ and $ g $ are assumed to obey a certain set of conditions. The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the concentration behavior of solutions as $ \\lambda\\rightarrow \\infty $ is also explored.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and concentration of solutions for a Kirchhoff-type problem with sublinear perturbation and steep potential well\",\"authors\":\"Shuwen He, Xiaobo Wen\",\"doi\":\"10.3934/math.2023325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear perturbation and steep potential well</p> <p><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{eqnarray*} \\\\left \\\\{\\\\begin{array}{ll} -\\\\Big(a+b\\\\int_{\\\\mathbb{R}^3}|\\\\nabla u|^2dx\\\\Big)\\\\Delta u+\\\\lambda V(x)u = f(x,u)+g(x)|u|^{q-2}u\\\\ \\\\ \\\\mbox{in}\\\\ \\\\mathbb{R}^3,\\\\\\\\ \\\\\\\\ u\\\\in H^1(\\\\mathbb{R}^3), \\\\\\\\ \\\\end{array} \\\\right. \\\\label{1} \\\\end{eqnarray*} $\\\\end{document} </tex-math></disp-formula></p> <p>where $ a $ and $ b $ are positive constants, $ \\\\lambda > 0 $ is a parameter, $ 1 < q < 2 $, the potential $ V\\\\in C(\\\\mathbb{R}^3, \\\\mathbb{R}) $ and $ V^{-1}(0) $ has a nonempty interior. The functions $ f $ and $ g $ are assumed to obey a certain set of conditions. The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the concentration behavior of solutions as $ \\\\lambda\\\\rightarrow \\\\infty $ is also explored.</p></abstract>\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023325\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023325","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear perturbation and steep potential well \begin{document}$ \begin{eqnarray*} \left \{\begin{array}{ll} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u+\lambda V(x)u = f(x,u)+g(x)|u|^{q-2}u\ \ \mbox{in}\ \mathbb{R}^3,\\ \\ u\in H^1(\mathbb{R}^3), \\ \end{array} \right. \label{1} \end{eqnarray*} $\end{document} where $ a $ and $ b $ are positive constants, $ \lambda > 0 $ is a parameter, $ 1 < q < 2 $, the potential $ V\in C(\mathbb{R}^3, \mathbb{R}) $ and $ V^{-1}(0) $ has a nonempty interior. The functions $ f $ and $ g $ are assumed to obey a certain set of conditions. The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the concentration behavior of solutions as $ \lambda\rightarrow \infty $ is also explored.
where $ a $ and $ b $ are positive constants, $ \lambda > 0 $ is a parameter, $ 1 < q < 2 $, the potential $ V\in C(\mathbb{R}^3, \mathbb{R}) $ and $ V^{-1}(0) $ has a nonempty interior. The functions $ f $ and $ g $ are assumed to obey a certain set of conditions. The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the concentration behavior of solutions as $ \lambda\rightarrow \infty $ is also explored.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.