具有特征值性质的不平衡符号图

IF 1.8 3区 数学 Q1 MATHEMATICS
Rashad Ismail, S. Hameed, Uzma Ahmad, Khadija Majeed, M. Javaid
{"title":"具有特征值性质的不平衡符号图","authors":"Rashad Ismail, S. Hameed, Uzma Ahmad, Khadija Majeed, M. Javaid","doi":"10.3934/math.20231262","DOIUrl":null,"url":null,"abstract":"For a signature function $ \\Psi:E({H}) \\longrightarrow \\{\\pm 1\\} $ with underlying graph $ H $, a signed graph (S.G) $ \\hat{H} = (H, \\Psi) $ is a graph in which edges are assigned the signs using the signature function $ \\Psi $. An S.G $ \\hat{H} $ is said to fulfill the symmetric eigenvalue property if for every eigenvalue $ \\hat{h}(\\hat{H}) $ of $ \\hat{H} $, $ -\\hat{h}(\\hat{H}) $ is also an eigenvalue of $ \\hat{H} $. A non singular S.G $ \\hat{H} $ is said to fulfill the property $ (\\mathcal{SR}) $ if for every eigenvalue $ \\hat{h}(\\hat{H}) $ of $ \\hat{H} $, its reciprocal is also an eigenvalue of $ \\hat{H} $ (with multiplicity as that of $ \\hat{h}(\\hat{H}) $). A non singular S.G $ \\hat{H} $ is said to fulfill the property $ (-\\mathcal{SR}) $ if for every eigenvalue $ \\hat{h}(\\hat{H}) $ of $ \\hat{H} $, its negative reciprocal is also an eigenvalue of $ \\hat{H} $ (with multiplicity as that of $ \\hat{h}(\\hat{H}) $). In this article, non bipartite unbalanced S.Gs $ \\hat{\\mathfrak{C}}^{(m, 1)}_{3} $ and $ \\hat{\\mathfrak{C}}^{(m, 2)}_{5} $, where $ m $ is even positive integer have been constructed and it has been shown that these graphs fulfill the symmetric eigenvalue property, the S.Gs $ \\hat{\\mathfrak{C}}^{(m, 1)}_{3} $ also fulfill the properties $ (-\\mathcal{SR}) $ and $ (\\mathcal{SR}) $, whereas the S.Gs $ \\hat{\\mathfrak{C}}^{(m, 2)}_{5} $ are close to fulfill the properties $ (-\\mathcal{SR}) $ and $ (\\mathcal{SR}) $.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbalanced signed graphs with eigenvalue properties\",\"authors\":\"Rashad Ismail, S. Hameed, Uzma Ahmad, Khadija Majeed, M. Javaid\",\"doi\":\"10.3934/math.20231262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a signature function $ \\\\Psi:E({H}) \\\\longrightarrow \\\\{\\\\pm 1\\\\} $ with underlying graph $ H $, a signed graph (S.G) $ \\\\hat{H} = (H, \\\\Psi) $ is a graph in which edges are assigned the signs using the signature function $ \\\\Psi $. An S.G $ \\\\hat{H} $ is said to fulfill the symmetric eigenvalue property if for every eigenvalue $ \\\\hat{h}(\\\\hat{H}) $ of $ \\\\hat{H} $, $ -\\\\hat{h}(\\\\hat{H}) $ is also an eigenvalue of $ \\\\hat{H} $. A non singular S.G $ \\\\hat{H} $ is said to fulfill the property $ (\\\\mathcal{SR}) $ if for every eigenvalue $ \\\\hat{h}(\\\\hat{H}) $ of $ \\\\hat{H} $, its reciprocal is also an eigenvalue of $ \\\\hat{H} $ (with multiplicity as that of $ \\\\hat{h}(\\\\hat{H}) $). A non singular S.G $ \\\\hat{H} $ is said to fulfill the property $ (-\\\\mathcal{SR}) $ if for every eigenvalue $ \\\\hat{h}(\\\\hat{H}) $ of $ \\\\hat{H} $, its negative reciprocal is also an eigenvalue of $ \\\\hat{H} $ (with multiplicity as that of $ \\\\hat{h}(\\\\hat{H}) $). In this article, non bipartite unbalanced S.Gs $ \\\\hat{\\\\mathfrak{C}}^{(m, 1)}_{3} $ and $ \\\\hat{\\\\mathfrak{C}}^{(m, 2)}_{5} $, where $ m $ is even positive integer have been constructed and it has been shown that these graphs fulfill the symmetric eigenvalue property, the S.Gs $ \\\\hat{\\\\mathfrak{C}}^{(m, 1)}_{3} $ also fulfill the properties $ (-\\\\mathcal{SR}) $ and $ (\\\\mathcal{SR}) $, whereas the S.Gs $ \\\\hat{\\\\mathfrak{C}}^{(m, 2)}_{5} $ are close to fulfill the properties $ (-\\\\mathcal{SR}) $ and $ (\\\\mathcal{SR}) $.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231262\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231262","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于具有底层图$ H $的签名函数$ \Psi:E({H}) \longrightarrow \{\pm 1\} $,签名图(S.G) $ \hat{H} = (H, \Psi) $是使用签名函数$ \Psi $为其边分配符号的图。如果对于$ \hat{H} $的每一个特征值$ \hat{h}(\hat{H}) $, $ -\hat{h}(\hat{H}) $也是$ \hat{H} $的一个特征值,那么我们说一个S.G $ \hat{H} $满足对称特征值性质。如果对于$ \hat{H} $的每一个特征值$ \hat{h}(\hat{H}) $,它的倒数也是$ \hat{H} $的一个特征值(其多重性与$ \hat{h}(\hat{H}) $相同),则一个非奇异S.G $ \hat{H} $满足$ (\mathcal{SR}) $的性质。如果对于$ \hat{H} $的每一个特征值$ \hat{h}(\hat{H}) $,它的负倒数也是$ \hat{H} $的一个特征值(其多重性与$ \hat{h}(\hat{H}) $相同),则一个非奇异S.G $ \hat{H} $满足$ (-\mathcal{SR}) $的性质。本文构造了$ m $为偶正整数的非二部非平衡gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $和$ \hat{\mathfrak{C}}^{(m, 2)}_{5} $,并证明了这些图满足对称特征值性质,gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $也满足$ (-\mathcal{SR}) $和$ (\mathcal{SR}) $的性质,而gs $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $则接近于满足$ (-\mathcal{SR}) $和$ (\mathcal{SR}) $的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbalanced signed graphs with eigenvalue properties
For a signature function $ \Psi:E({H}) \longrightarrow \{\pm 1\} $ with underlying graph $ H $, a signed graph (S.G) $ \hat{H} = (H, \Psi) $ is a graph in which edges are assigned the signs using the signature function $ \Psi $. An S.G $ \hat{H} $ is said to fulfill the symmetric eigenvalue property if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, $ -\hat{h}(\hat{H}) $ is also an eigenvalue of $ \hat{H} $. A non singular S.G $ \hat{H} $ is said to fulfill the property $ (\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). A non singular S.G $ \hat{H} $ is said to fulfill the property $ (-\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its negative reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). In this article, non bipartite unbalanced S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ and $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $, where $ m $ is even positive integer have been constructed and it has been shown that these graphs fulfill the symmetric eigenvalue property, the S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ also fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $, whereas the S.Gs $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $ are close to fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信