{"title":"一类二阶四变量双周期参数极大型差分方程系统的全局行为","authors":"T. Sun, G. Su, Bin Qin, Caihong Han","doi":"10.3934/math.20231220","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters</p> <p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\left\\{\\begin{array}{ll}x_{n} = \\max\\Big\\{A_n , \\frac{z_{n-1}}{y_{n-2}}\\Big\\}, \\ y_{n} = \\max \\Big\\{B_n, \\frac{w_{n-1}}{x_{n-2}}\\Big\\}, \\ z_{n} = \\max\\Big\\{C_n , \\frac{x_{n-1}}{w_{n-2}}\\Big\\}, \\ w_{n} = \\max \\Big\\{D_n, \\frac{y_{n-1}}{z_{n-2}}\\Big\\}, \\ \\end{array}\\right. \\ \\ n\\in \\{0, 1, 2, \\cdots\\}, $\\end{document} </tex-math></disp-formula></p> <p>where $ A_n, B_n, C_n, D_n\\in (0, +\\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\\in (0, +\\infty)\\ (1\\leq i\\leq 2) $. We show that if $ \\min\\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\\} < 1 $, then this system has unbounded solutions. Also, if $ \\min\\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\\}\\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters\",\"authors\":\"T. Sun, G. Su, Bin Qin, Caihong Han\",\"doi\":\"10.3934/math.20231220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters</p> <p><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\left\\\\{\\\\begin{array}{ll}x_{n} = \\\\max\\\\Big\\\\{A_n , \\\\frac{z_{n-1}}{y_{n-2}}\\\\Big\\\\}, \\\\ y_{n} = \\\\max \\\\Big\\\\{B_n, \\\\frac{w_{n-1}}{x_{n-2}}\\\\Big\\\\}, \\\\ z_{n} = \\\\max\\\\Big\\\\{C_n , \\\\frac{x_{n-1}}{w_{n-2}}\\\\Big\\\\}, \\\\ w_{n} = \\\\max \\\\Big\\\\{D_n, \\\\frac{y_{n-1}}{z_{n-2}}\\\\Big\\\\}, \\\\ \\\\end{array}\\\\right. \\\\ \\\\ n\\\\in \\\\{0, 1, 2, \\\\cdots\\\\}, $\\\\end{document} </tex-math></disp-formula></p> <p>where $ A_n, B_n, C_n, D_n\\\\in (0, +\\\\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\\\\in (0, +\\\\infty)\\\\ (1\\\\leq i\\\\leq 2) $. We show that if $ \\\\min\\\\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\\\\} < 1 $, then this system has unbounded solutions. Also, if $ \\\\min\\\\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\\\\}\\\\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.</p></abstract>\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231220\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters \begin{document}$ \left\{\begin{array}{ll}x_{n} = \max\Big\{A_n , \frac{z_{n-1}}{y_{n-2}}\Big\}, \ y_{n} = \max \Big\{B_n, \frac{w_{n-1}}{x_{n-2}}\Big\}, \ z_{n} = \max\Big\{C_n , \frac{x_{n-1}}{w_{n-2}}\Big\}, \ w_{n} = \max \Big\{D_n, \frac{y_{n-1}}{z_{n-2}}\Big\}, \ \end{array}\right. \ \ n\in \{0, 1, 2, \cdots\}, $\end{document} where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.
Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters
In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters
where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.