零膨胀计数回归模型的一种新方法:零膨胀Poisson广义- lindley线性模型及其应用

IF 1.8 3区 数学 Q1 MATHEMATICS
E. Altun, Hana Alqifari, M. Eliwa
{"title":"零膨胀计数回归模型的一种新方法:零膨胀Poisson广义- lindley线性模型及其应用","authors":"E. Altun, Hana Alqifari, M. Eliwa","doi":"10.3934/math.20231183","DOIUrl":null,"url":null,"abstract":"Count regression models are important statistical tools to model the discrete dependent variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers a new model as an alternative to the zero-inflated negative-binomial regression model. To do this, Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated Poisson generalized Lindley regression model. The results regarding the efficiency of parameter estimation of the proposed model are evaluated with two simulation studies. To evaluate the success of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results obtained, the proposed model gives better results than the negative-binomial regression model both in case of over-dispersion and in the case of zero inflation.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach for zero-inflated count regression model: Zero-inflated Poisson generalized-Lindley linear model with applications\",\"authors\":\"E. Altun, Hana Alqifari, M. Eliwa\",\"doi\":\"10.3934/math.20231183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Count regression models are important statistical tools to model the discrete dependent variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers a new model as an alternative to the zero-inflated negative-binomial regression model. To do this, Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated Poisson generalized Lindley regression model. The results regarding the efficiency of parameter estimation of the proposed model are evaluated with two simulation studies. To evaluate the success of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results obtained, the proposed model gives better results than the negative-binomial regression model both in case of over-dispersion and in the case of zero inflation.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231183\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231183","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

计数回归模型是用已知协变量对离散因变量进行建模的重要统计工具。当因变量在零点处出现过分散和膨胀时,采用零膨胀负二项回归模型。本文提出了一个新的模型来替代零膨胀负二项回归模型。为此,对泊松广义林德利分布进行了重新参数化,并利用极大似然估计方法讨论了泊松广义林德利分布的参数估计问题。提出的模型称为零膨胀泊松广义林德利回归模型。通过两个仿真实验对所提模型的参数估计效率进行了评价。为了评估所提出的模型在零通货膨胀情况下的成功,分析了两个数据集。结果表明,无论在过度分散情况下还是在零通货膨胀情况下,该模型都优于负二项回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach for zero-inflated count regression model: Zero-inflated Poisson generalized-Lindley linear model with applications
Count regression models are important statistical tools to model the discrete dependent variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers a new model as an alternative to the zero-inflated negative-binomial regression model. To do this, Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated Poisson generalized Lindley regression model. The results regarding the efficiency of parameter estimation of the proposed model are evaluated with two simulation studies. To evaluate the success of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results obtained, the proposed model gives better results than the negative-binomial regression model both in case of over-dispersion and in the case of zero inflation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信