{"title":"零膨胀计数回归模型的一种新方法:零膨胀Poisson广义- lindley线性模型及其应用","authors":"E. Altun, Hana Alqifari, M. Eliwa","doi":"10.3934/math.20231183","DOIUrl":null,"url":null,"abstract":"Count regression models are important statistical tools to model the discrete dependent variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers a new model as an alternative to the zero-inflated negative-binomial regression model. To do this, Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated Poisson generalized Lindley regression model. The results regarding the efficiency of parameter estimation of the proposed model are evaluated with two simulation studies. To evaluate the success of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results obtained, the proposed model gives better results than the negative-binomial regression model both in case of over-dispersion and in the case of zero inflation.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach for zero-inflated count regression model: Zero-inflated Poisson generalized-Lindley linear model with applications\",\"authors\":\"E. Altun, Hana Alqifari, M. Eliwa\",\"doi\":\"10.3934/math.20231183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Count regression models are important statistical tools to model the discrete dependent variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers a new model as an alternative to the zero-inflated negative-binomial regression model. To do this, Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated Poisson generalized Lindley regression model. The results regarding the efficiency of parameter estimation of the proposed model are evaluated with two simulation studies. To evaluate the success of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results obtained, the proposed model gives better results than the negative-binomial regression model both in case of over-dispersion and in the case of zero inflation.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231183\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231183","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A novel approach for zero-inflated count regression model: Zero-inflated Poisson generalized-Lindley linear model with applications
Count regression models are important statistical tools to model the discrete dependent variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers a new model as an alternative to the zero-inflated negative-binomial regression model. To do this, Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated Poisson generalized Lindley regression model. The results regarding the efficiency of parameter estimation of the proposed model are evaluated with two simulation studies. To evaluate the success of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results obtained, the proposed model gives better results than the negative-binomial regression model both in case of over-dispersion and in the case of zero inflation.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.