{"title":"关于$ k $-折叠$ \\数学{N} $-结构的半群的运算代数性质和子半群","authors":"Anas Al-Masarwah, Mohammed Alqahtani","doi":"10.3934/math.20231125","DOIUrl":null,"url":null,"abstract":"The concept of $ k $-folded $ \\mathcal{N} $-structures ($ k $-F$ \\mathcal{N} $Ss) is an essential concept to be considered for tackling intricate and tricky data. In this study, we want to broaden the notion of $ k $-F$ \\mathcal{N} $S by providing a general algebraic structure for tackling $ k $-folded $ \\mathcal{N} $-data by fusing the conception of semigroup and $ k $-F$ \\mathcal{N} $S. First, we introduce and study some algebraic properties of $ k $-F$ \\mathcal{N} $Ss, for instance, subset, characteristic function, union, intersection, complement and product of $ k $-F$ \\mathcal{N} $Ss, and support them by illustrative examples. We also propose $ k $-folded $ \\mathcal{N} $-subsemigroups ($ k $-F$ \\mathcal{N} $SBs) and $ \\widetilde{\\zeta} $-$ k $-folded $ \\mathcal{N} $-subsemigroups ($ \\widetilde{\\zeta} $-$ k $-F$ \\mathcal{N} $SBs) in the structure of semigroups and explore some attributes of these concepts. Characterizations of subsemigroups are considered based on these concepts. Using the notion of $ k $-folded $ \\mathcal{N} $-product, characterizations of $ k $-F$ \\mathcal{N} $SBs are also discussed. Further, we obtain a necessary condition of a $ k $-F$ \\mathcal{N} $SB to be a $ k $-folded $ \\mathcal{N} $-idempotent. Finally, relations between $ k $-folded $ \\mathcal{N} $-intersection and $ k $-folded $ \\mathcal{N} $-product are displayed, and how the image and inverse image of a $ k $-F$ \\mathcal{N} $SB become a $ k $-F$ \\mathcal{N} $SB is studied.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operational algebraic properties and subsemigroups of semigroups in view of $ k $-folded $ \\\\mathcal{N} $-structures\",\"authors\":\"Anas Al-Masarwah, Mohammed Alqahtani\",\"doi\":\"10.3934/math.20231125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of $ k $-folded $ \\\\mathcal{N} $-structures ($ k $-F$ \\\\mathcal{N} $Ss) is an essential concept to be considered for tackling intricate and tricky data. In this study, we want to broaden the notion of $ k $-F$ \\\\mathcal{N} $S by providing a general algebraic structure for tackling $ k $-folded $ \\\\mathcal{N} $-data by fusing the conception of semigroup and $ k $-F$ \\\\mathcal{N} $S. First, we introduce and study some algebraic properties of $ k $-F$ \\\\mathcal{N} $Ss, for instance, subset, characteristic function, union, intersection, complement and product of $ k $-F$ \\\\mathcal{N} $Ss, and support them by illustrative examples. We also propose $ k $-folded $ \\\\mathcal{N} $-subsemigroups ($ k $-F$ \\\\mathcal{N} $SBs) and $ \\\\widetilde{\\\\zeta} $-$ k $-folded $ \\\\mathcal{N} $-subsemigroups ($ \\\\widetilde{\\\\zeta} $-$ k $-F$ \\\\mathcal{N} $SBs) in the structure of semigroups and explore some attributes of these concepts. Characterizations of subsemigroups are considered based on these concepts. Using the notion of $ k $-folded $ \\\\mathcal{N} $-product, characterizations of $ k $-F$ \\\\mathcal{N} $SBs are also discussed. Further, we obtain a necessary condition of a $ k $-F$ \\\\mathcal{N} $SB to be a $ k $-folded $ \\\\mathcal{N} $-idempotent. Finally, relations between $ k $-folded $ \\\\mathcal{N} $-intersection and $ k $-folded $ \\\\mathcal{N} $-product are displayed, and how the image and inverse image of a $ k $-F$ \\\\mathcal{N} $SB become a $ k $-F$ \\\\mathcal{N} $SB is studied.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231125\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231125","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
$ k $-fold $ \mathcal{N} $-结构($ k $-F$ \mathcal{N} $ s)的概念是处理复杂和棘手数据时需要考虑的基本概念。在本研究中,我们希望通过融合半群和$ k $-F$ \mathcal{N} $S的概念,为处理$ k $-折叠$ \mathcal{N} $-数据提供一个通用的代数结构,从而扩展$ k $-F$ \mathcal{N} $S的概念。首先,介绍和研究了$ k $-F$ \mathcal{N} $ s的子集、特征函数、并集、交、补和积等代数性质,并用实例进行了说明。我们还在半群结构中提出了$ k $-折叠$ \mathcal{N} $-子半群($ k $-f $ \mathcal{N} $SBs)和$ \ widdetilde {\zeta} $-$ k $-折叠$ \mathcal{N} $-子半群($ \ widdetilde {\zeta} $-$ k $-f $ \mathcal{N} $SBs),并探讨了这些概念的一些属性。基于这些概念考虑子半群的特征。利用$ k $-折叠$ \mathcal{N} $-积的概念,讨论了$ k $-F$ \mathcal{N} $SBs的刻画。进一步,我们得到了$ k $-F$ \mathcal{N} $SB是$ k $-折叠$ \mathcal{N} $-幂等的必要条件。最后,给出了$ k $-折叠$ \mathcal{N} $-交与$ k $-折叠$ \mathcal{N} $-积之间的关系,并研究了$ k $-F$ \mathcal{N} $SB的正反像如何变成$ k $-F$ \mathcal{N} $SB。
Operational algebraic properties and subsemigroups of semigroups in view of $ k $-folded $ \mathcal{N} $-structures
The concept of $ k $-folded $ \mathcal{N} $-structures ($ k $-F$ \mathcal{N} $Ss) is an essential concept to be considered for tackling intricate and tricky data. In this study, we want to broaden the notion of $ k $-F$ \mathcal{N} $S by providing a general algebraic structure for tackling $ k $-folded $ \mathcal{N} $-data by fusing the conception of semigroup and $ k $-F$ \mathcal{N} $S. First, we introduce and study some algebraic properties of $ k $-F$ \mathcal{N} $Ss, for instance, subset, characteristic function, union, intersection, complement and product of $ k $-F$ \mathcal{N} $Ss, and support them by illustrative examples. We also propose $ k $-folded $ \mathcal{N} $-subsemigroups ($ k $-F$ \mathcal{N} $SBs) and $ \widetilde{\zeta} $-$ k $-folded $ \mathcal{N} $-subsemigroups ($ \widetilde{\zeta} $-$ k $-F$ \mathcal{N} $SBs) in the structure of semigroups and explore some attributes of these concepts. Characterizations of subsemigroups are considered based on these concepts. Using the notion of $ k $-folded $ \mathcal{N} $-product, characterizations of $ k $-F$ \mathcal{N} $SBs are also discussed. Further, we obtain a necessary condition of a $ k $-F$ \mathcal{N} $SB to be a $ k $-folded $ \mathcal{N} $-idempotent. Finally, relations between $ k $-folded $ \mathcal{N} $-intersection and $ k $-folded $ \mathcal{N} $-product are displayed, and how the image and inverse image of a $ k $-F$ \mathcal{N} $SB become a $ k $-F$ \mathcal{N} $SB is studied.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.