欧几里得三维空间$ \mathbb{E}^{3} $中具有Bertrand对的互测地线曲面族对

IF 1.8 3区 数学 Q1 MATHEMATICS
Areej A. Almoneef, R. Abdel-Baky
{"title":"欧几里得三维空间$ \\mathbb{E}^{3} $中具有Bertrand对的互测地线曲面族对","authors":"Areej A. Almoneef, R. Abdel-Baky","doi":"10.3934/math.20231047","DOIUrl":null,"url":null,"abstract":"The main interest of this work is to construct surface family pair with the symmetry of Bertrand pair in Euclidean 3-space $ \\mathbb{E}^{3} $. Then, by employing the Serret-Frenet frame, we conclude the sufficient and necessary conditions of surface family pair interpolating Bertrand pair as mutual geodesic curves. Moreover, the conclusion to ruled surface family pair is also obtained. Meanwhile, this work is demonstrated through several examples.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface family pair with Bertrand pair as mutual geodesic curves in Euclidean 3-space $ \\\\mathbb{E}^{3} $\",\"authors\":\"Areej A. Almoneef, R. Abdel-Baky\",\"doi\":\"10.3934/math.20231047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main interest of this work is to construct surface family pair with the symmetry of Bertrand pair in Euclidean 3-space $ \\\\mathbb{E}^{3} $. Then, by employing the Serret-Frenet frame, we conclude the sufficient and necessary conditions of surface family pair interpolating Bertrand pair as mutual geodesic curves. Moreover, the conclusion to ruled surface family pair is also obtained. Meanwhile, this work is demonstrated through several examples.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231047\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231047","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本工作的主要兴趣是在欧几里德三维空间$ \mathbb{E}^{3} $中构造具有Bertrand对对称性的曲面族对。然后,利用Serret-Frenet框架,得出曲面族对插值Bertrand对为互测地线曲线的充要条件。此外,还得到了直纹曲面族对的结论。同时,通过几个实例对该工作进行了论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface family pair with Bertrand pair as mutual geodesic curves in Euclidean 3-space $ \mathbb{E}^{3} $
The main interest of this work is to construct surface family pair with the symmetry of Bertrand pair in Euclidean 3-space $ \mathbb{E}^{3} $. Then, by employing the Serret-Frenet frame, we conclude the sufficient and necessary conditions of surface family pair interpolating Bertrand pair as mutual geodesic curves. Moreover, the conclusion to ruled surface family pair is also obtained. Meanwhile, this work is demonstrated through several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信