{"title":"一类半正子非线性椭圆方程边值问题的正径向解","authors":"Limin Guo, Jiafa Xu, D. O’Regan","doi":"10.3934/math.2023053","DOIUrl":null,"url":null,"abstract":"In this paper we use the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations. Some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities\",\"authors\":\"Limin Guo, Jiafa Xu, D. O’Regan\",\"doi\":\"10.3934/math.2023053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we use the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations. Some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2023053\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023053","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities
In this paper we use the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations. Some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.