{"title":"随机动力学与Edmonds算法","authors":"Jonathan Newton, William H. Sandholm","doi":"10.3934/jdg.2021029","DOIUrl":null,"url":null,"abstract":"Recently, there has been a revival of interest in cyclic decompositions of stochastic dynamics. These decompositions consider the behavior of dynamics over the short, medium and long run, aggregating cycles of behavior into progressively larger cycles, eventually encompassing the entire state space. We show that these decompositions are equivalent to the aggregative stage of Edmonds' algorithm and that this equivalence can be used to recover well-known results in the literature.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic dynamics and Edmonds' algorithm\",\"authors\":\"Jonathan Newton, William H. Sandholm\",\"doi\":\"10.3934/jdg.2021029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been a revival of interest in cyclic decompositions of stochastic dynamics. These decompositions consider the behavior of dynamics over the short, medium and long run, aggregating cycles of behavior into progressively larger cycles, eventually encompassing the entire state space. We show that these decompositions are equivalent to the aggregative stage of Edmonds' algorithm and that this equivalence can be used to recover well-known results in the literature.\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2021029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2021029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Recently, there has been a revival of interest in cyclic decompositions of stochastic dynamics. These decompositions consider the behavior of dynamics over the short, medium and long run, aggregating cycles of behavior into progressively larger cycles, eventually encompassing the entire state space. We show that these decompositions are equivalent to the aggregative stage of Edmonds' algorithm and that this equivalence can be used to recover well-known results in the literature.
期刊介绍:
The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.