复合性满足直流优化

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. Moudafi, P. Maingé
{"title":"复合性满足直流优化","authors":"A. Moudafi, P. Maingé","doi":"10.3934/jdg.2021022","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Based on a work by M. Dur and J.-B. Hiriart-Urruty[<xref ref-type=\"bibr\" rid=\"b3\">3</xref>], we consider the problem of whether a symmetric matrix is copositive formulated as a difference of convex functions problem. The convex nondifferentiable function in this d.c. decomposition being proximable, we then apply a proximal-gradient method to approximate the related stationary points. Whereas, in [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>], the DCA algorithm was used.</p>","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copositivity meets D. C. optimization\",\"authors\":\"A. Moudafi, P. Maingé\",\"doi\":\"10.3934/jdg.2021022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Based on a work by M. Dur and J.-B. Hiriart-Urruty[<xref ref-type=\\\"bibr\\\" rid=\\\"b3\\\">3</xref>], we consider the problem of whether a symmetric matrix is copositive formulated as a difference of convex functions problem. The convex nondifferentiable function in this d.c. decomposition being proximable, we then apply a proximal-gradient method to approximate the related stationary points. Whereas, in [<xref ref-type=\\\"bibr\\\" rid=\\\"b3\\\">3</xref>], the DCA algorithm was used.</p>\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2021022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2021022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

根据M. Dur和J.-B.的作品改编。hirart - urruty,我们考虑一个对称矩阵是否可合成的问题作为凸函数的差分问题。由于该dc分解中的凸不可微函数是近似的,因此我们采用近似梯度方法来近似相关的平稳点。而在[3]中,则使用DCA算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copositivity meets D. C. optimization

Based on a work by M. Dur and J.-B. Hiriart-Urruty[3], we consider the problem of whether a symmetric matrix is copositive formulated as a difference of convex functions problem. The convex nondifferentiable function in this d.c. decomposition being proximable, we then apply a proximal-gradient method to approximate the related stationary points. Whereas, in [3], the DCA algorithm was used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信