计算机病毒传播的随机模型

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Lefebvre
{"title":"计算机病毒传播的随机模型","authors":"M. Lefebvre","doi":"10.3934/jdg.2020010","DOIUrl":null,"url":null,"abstract":"A three-dimensional continuous-time stochastic model based on the classic Kermack-McKendrick model for the spread of epidemics is proposed for the propagation of a computer virus. Moreover, control variables are introduced into the model. We look for the controls that either minimize or maximize the expected time it takes to clean the infected computers, or to protect them from the virus. Using dynamic programming, the equations satisfied by the value functions are derived. Particular problems are solved explicitly.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A stochastic model for computer virus propagation\",\"authors\":\"M. Lefebvre\",\"doi\":\"10.3934/jdg.2020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three-dimensional continuous-time stochastic model based on the classic Kermack-McKendrick model for the spread of epidemics is proposed for the propagation of a computer virus. Moreover, control variables are introduced into the model. We look for the controls that either minimize or maximize the expected time it takes to clean the infected computers, or to protect them from the virus. Using dynamic programming, the equations satisfied by the value functions are derived. Particular problems are solved explicitly.\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

在经典Kermack-McKendrick模型的基础上,提出了计算机病毒传播的三维连续时间随机模型。并在模型中引入控制变量。我们寻找最小化或最大化清理受感染计算机所需的预期时间,或保护它们免受病毒侵害的控制措施。利用动态规划的方法,导出了数值函数所满足的方程。具体问题得到明确解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic model for computer virus propagation
A three-dimensional continuous-time stochastic model based on the classic Kermack-McKendrick model for the spread of epidemics is proposed for the propagation of a computer virus. Moreover, control variables are introduced into the model. We look for the controls that either minimize or maximize the expected time it takes to clean the infected computers, or to protect them from the virus. Using dynamic programming, the equations satisfied by the value functions are derived. Particular problems are solved explicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信