论策略型对策中纳什均衡的唯一性

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
J. Minagawa
{"title":"论策略型对策中纳什均衡的唯一性","authors":"J. Minagawa","doi":"10.3934/jdg.2020006","DOIUrl":null,"url":null,"abstract":"We consider a sufficient condition for the uniqueness of a Nash equilibrium in strategic-form games: for any two distinct strategy profiles, there is a player who can obtain a higher payoff by unilaterally changing the strategy from one strategy profile to the other strategy profile. An example of a game that satisfies this condition is the prisoner's dilemma. Viewed as a solution concept, the Nash equilibrium satisfying the condition is stronger than strict Nash Equilibrium and weaker than strict dominant strategy equilibrium.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the uniqueness of Nash equilibrium in strategic-form games\",\"authors\":\"J. Minagawa\",\"doi\":\"10.3934/jdg.2020006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a sufficient condition for the uniqueness of a Nash equilibrium in strategic-form games: for any two distinct strategy profiles, there is a player who can obtain a higher payoff by unilaterally changing the strategy from one strategy profile to the other strategy profile. An example of a game that satisfies this condition is the prisoner's dilemma. Viewed as a solution concept, the Nash equilibrium satisfying the condition is stronger than strict Nash Equilibrium and weaker than strict dominant strategy equilibrium.\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2020006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了策略形式博弈中纳什均衡唯一性的一个充分条件:对于任意两个不同的策略配置,存在一个参与人可以通过单方面将策略从一个策略配置改变为另一个策略配置来获得更高的收益。满足这个条件的一个例子是囚徒困境。作为一个解概念,满足该条件的纳什均衡强于严格纳什均衡,弱于严格优势策略均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the uniqueness of Nash equilibrium in strategic-form games
We consider a sufficient condition for the uniqueness of a Nash equilibrium in strategic-form games: for any two distinct strategy profiles, there is a player who can obtain a higher payoff by unilaterally changing the strategy from one strategy profile to the other strategy profile. An example of a game that satisfies this condition is the prisoner's dilemma. Viewed as a solution concept, the Nash equilibrium satisfying the condition is stronger than strict Nash Equilibrium and weaker than strict dominant strategy equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信