弱凸函数的近点法的正则化解释

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tim Hoheisel, M. Laborde, Adam M. Oberman
{"title":"弱凸函数的近点法的正则化解释","authors":"Tim Hoheisel, M. Laborde, Adam M. Oberman","doi":"10.3934/jdg.2020005","DOIUrl":null,"url":null,"abstract":"Empirical evidence and theoretical results suggest that the proximal point method can be computed approximately and still converge faster than the corresponding gradient descent method, in both the stochastic and exact gradient case. In this article we provide a perspective on this result by interpreting the method as gradient descent on a regularized function. This perspective applies in the case of weakly convex functions where proofs of the faster rates are not available. Using this analysis we find the optimal value of the regularization parameter in terms of the weak convexity.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A regularization interpretation of the proximal point method for weakly convex functions\",\"authors\":\"Tim Hoheisel, M. Laborde, Adam M. Oberman\",\"doi\":\"10.3934/jdg.2020005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical evidence and theoretical results suggest that the proximal point method can be computed approximately and still converge faster than the corresponding gradient descent method, in both the stochastic and exact gradient case. In this article we provide a perspective on this result by interpreting the method as gradient descent on a regularized function. This perspective applies in the case of weakly convex functions where proofs of the faster rates are not available. Using this analysis we find the optimal value of the regularization parameter in terms of the weak convexity.\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2020005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2020005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 10

摘要

经验证据和理论结果表明,无论在随机情况还是精确梯度情况下,近点法都可以近似地计算,并且仍然比相应的梯度下降法收敛得快。在本文中,我们通过将该方法解释为正则化函数的梯度下降来提供对该结果的看法。这种观点适用于弱凸函数的情况,在这种情况下,更快的速率的证明是不可用的。利用这种分析,我们找到了正则化参数在弱凸性方面的最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A regularization interpretation of the proximal point method for weakly convex functions
Empirical evidence and theoretical results suggest that the proximal point method can be computed approximately and still converge faster than the corresponding gradient descent method, in both the stochastic and exact gradient case. In this article we provide a perspective on this result by interpreting the method as gradient descent on a regularized function. This perspective applies in the case of weakly convex functions where proofs of the faster rates are not available. Using this analysis we find the optimal value of the regularization parameter in terms of the weak convexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信