湿气条件下HFMI处理焊接接头的VHCF行为

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Zhiwei Gao, Dong-po Wang, B. Gong, C. Deng, Shaojie Wu, Hai Zhang
{"title":"湿气条件下HFMI处理焊接接头的VHCF行为","authors":"Zhiwei Gao, Dong-po Wang, B. Gong, C. Deng, Shaojie Wu, Hai Zhang","doi":"10.29391/2022.101.003","DOIUrl":null,"url":null,"abstract":"Fatigue tests of cruciform welded joints made of Q355B steel at very-high-cycle fatigue (VHCF) regimes were carried out on as-welded specimens using highfrequency mechanical impact (HFMI) treatment in dry air and water-spray environments, respectively. The influence of the environment on fatigue life was more obvious in the VHCF regime. It was found that S-N curves became flat over the range of 106–108 cycles for as-welded specimens, while a continuously decreasing S-N curve existed for HFMI-treated specimens. Fatigue cracks initiated from the weld toe of the as-welded specimens in dry air and water-spray environments. Due to residual stress, the crack initiation site transition of HFMI-treated specimens from the weld toe to the weld root and base metal was observed at lower stress levels. Moreover, hydrogen-assisted quasi-cleavage and intergranular fracture were captured using a scanning electron microscope and a hydrogen permeation test.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"VHCF Behavior of Welded Joints with HFMI Treatment under Moisture Conditions\",\"authors\":\"Zhiwei Gao, Dong-po Wang, B. Gong, C. Deng, Shaojie Wu, Hai Zhang\",\"doi\":\"10.29391/2022.101.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue tests of cruciform welded joints made of Q355B steel at very-high-cycle fatigue (VHCF) regimes were carried out on as-welded specimens using highfrequency mechanical impact (HFMI) treatment in dry air and water-spray environments, respectively. The influence of the environment on fatigue life was more obvious in the VHCF regime. It was found that S-N curves became flat over the range of 106–108 cycles for as-welded specimens, while a continuously decreasing S-N curve existed for HFMI-treated specimens. Fatigue cracks initiated from the weld toe of the as-welded specimens in dry air and water-spray environments. Due to residual stress, the crack initiation site transition of HFMI-treated specimens from the weld toe to the weld root and base metal was observed at lower stress levels. Moreover, hydrogen-assisted quasi-cleavage and intergranular fracture were captured using a scanning electron microscope and a hydrogen permeation test.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2022.101.003\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2022.101.003","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

采用高频机械冲击(HFMI)处理,在干燥空气和喷水环境下对Q355B钢十字形焊接接头进行了高周疲劳(VHCF)试验。环境对疲劳寿命的影响在VHCF状态下更为明显。结果表明,在106 ~ 108次循环范围内,焊接态试样的S-N曲线趋于平缓,而hfmi处理态试样的S-N曲线呈持续下降趋势。在干燥空气和喷水环境下,焊接试样的焊缝趾部产生疲劳裂纹。由于残余应力的存在,在较低应力水平下,hfmi处理试样的裂纹起裂部位从焊趾向焊根和母材转变。此外,通过扫描电镜和氢渗透测试捕获了氢辅助准解理和晶间断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VHCF Behavior of Welded Joints with HFMI Treatment under Moisture Conditions
Fatigue tests of cruciform welded joints made of Q355B steel at very-high-cycle fatigue (VHCF) regimes were carried out on as-welded specimens using highfrequency mechanical impact (HFMI) treatment in dry air and water-spray environments, respectively. The influence of the environment on fatigue life was more obvious in the VHCF regime. It was found that S-N curves became flat over the range of 106–108 cycles for as-welded specimens, while a continuously decreasing S-N curve existed for HFMI-treated specimens. Fatigue cracks initiated from the weld toe of the as-welded specimens in dry air and water-spray environments. Due to residual stress, the crack initiation site transition of HFMI-treated specimens from the weld toe to the weld root and base metal was observed at lower stress levels. Moreover, hydrogen-assisted quasi-cleavage and intergranular fracture were captured using a scanning electron microscope and a hydrogen permeation test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信