保护气体和夹杂物含量对410NiMo钢焊缝冲击韧性和拉伸性能的影响

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Bouchra Tenni, M. Brochu, S. Godin, Denis Thibault
{"title":"保护气体和夹杂物含量对410NiMo钢焊缝冲击韧性和拉伸性能的影响","authors":"Bouchra Tenni, M. Brochu, S. Godin, Denis Thibault","doi":"10.29391/2021.100.005","DOIUrl":null,"url":null,"abstract":"The effect of shielding gas on the mechanical and microstructural characteristics of ER410NiMo martensitic stainless steel weldments was investigated. Three weldments with various inclusion contents were manufactured using different shielding gas compositions and welding processes: gas metal arc welding (GMAW) with 100% argon (Ar), GMAW 85% Ar/15% carbon dioxide (CO2), and flux cored arc welding (FCAW) 75% Ar/25% CO2. The inclusions in each weldment were characterized by means of scanning electron microscope observations and energy-dispersive spectroscopy analysis. The weldments underwent postweld heat treatment, after which the chemical composition and reformed austenite proportion were measured to account for microstructural effects. Hardness measurements, tensile tests, and impact toughness tests using the Charpy method were performed. The results showed that the Charpy V-notch (CVN) absorbed energy decreases with increasing inclusion content. The highest CVN absorbed energy, 195 J, was obtained for the GMAW 100% Ar weld, which had the lowest inclusion content. GMAW 85% Ar/15% CO2, with four times more inclusions than the former, had a CVN absorbed energy of 63 J. The current manufacturing process, FCAW 75% Ar/25% CO2, was found to have an inclusion content three times higher than the GMAW 100% Ar weld but a CVN absorbed energy of 66 J, which is close to the GMAW 85% Ar/15% CO2 weld. The results showed that using GMAW 100% Ar as a replacement to FCAW 75% Ar/25 % CO2 would lead to a three-fold improvement in terms of absorbed impact energy. The effect of inclusions on tensile properties, which was not clearly identified as several factors, in addition to inclusion content, affects the weld strength and elongation. Overall, the yield and ultimate tensile strengths differed slightly: 724 and 918 MPa for GMAW 100% Ar, 746 and 927 MPa for GMAW 85% Ar/15% CO2, and 711 and 864 MPa for FCAW 75% Ar/25% CO2, respectively.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Shielding Gas and Inclusion Content Effects on Impact Toughness and Tensile Properties of 410NiMo Steel Welds\",\"authors\":\"Bouchra Tenni, M. Brochu, S. Godin, Denis Thibault\",\"doi\":\"10.29391/2021.100.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of shielding gas on the mechanical and microstructural characteristics of ER410NiMo martensitic stainless steel weldments was investigated. Three weldments with various inclusion contents were manufactured using different shielding gas compositions and welding processes: gas metal arc welding (GMAW) with 100% argon (Ar), GMAW 85% Ar/15% carbon dioxide (CO2), and flux cored arc welding (FCAW) 75% Ar/25% CO2. The inclusions in each weldment were characterized by means of scanning electron microscope observations and energy-dispersive spectroscopy analysis. The weldments underwent postweld heat treatment, after which the chemical composition and reformed austenite proportion were measured to account for microstructural effects. Hardness measurements, tensile tests, and impact toughness tests using the Charpy method were performed. The results showed that the Charpy V-notch (CVN) absorbed energy decreases with increasing inclusion content. The highest CVN absorbed energy, 195 J, was obtained for the GMAW 100% Ar weld, which had the lowest inclusion content. GMAW 85% Ar/15% CO2, with four times more inclusions than the former, had a CVN absorbed energy of 63 J. The current manufacturing process, FCAW 75% Ar/25% CO2, was found to have an inclusion content three times higher than the GMAW 100% Ar weld but a CVN absorbed energy of 66 J, which is close to the GMAW 85% Ar/15% CO2 weld. The results showed that using GMAW 100% Ar as a replacement to FCAW 75% Ar/25 % CO2 would lead to a three-fold improvement in terms of absorbed impact energy. The effect of inclusions on tensile properties, which was not clearly identified as several factors, in addition to inclusion content, affects the weld strength and elongation. Overall, the yield and ultimate tensile strengths differed slightly: 724 and 918 MPa for GMAW 100% Ar, 746 and 927 MPa for GMAW 85% Ar/15% CO2, and 711 and 864 MPa for FCAW 75% Ar/25% CO2, respectively.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2021.100.005\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.005","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 5

摘要

研究了保护气体对ER410NiMo马氏体不锈钢焊接件力学性能和显微组织的影响。采用不同的保护气体成分和焊接工艺制备了3种不同夹杂物含量的焊缝:100%氩气(Ar)、85%氩气/15%二氧化碳(CO2)的金属气弧焊(GMAW)和75%氩气/25%二氧化碳的药芯电弧焊(FCAW)。通过扫描电镜观察和能谱分析对各焊件中的夹杂物进行了表征。焊接件进行焊后热处理,之后测量化学成分和转化奥氏体比例,以解释微观组织的影响。使用Charpy方法进行了硬度测量、拉伸试验和冲击韧性试验。结果表明:随着夹杂物含量的增加,Charpy v型缺口(CVN)吸收能量减小;GMAW 100% Ar焊缝的CVN吸收能量最高,为195 J,夹杂物含量最低。GMAW 85% Ar/15% CO2焊缝中夹杂物的含量是前者的4倍,其CVN吸收能量为63 J。目前FCAW 75% Ar/25% CO2的工艺中,夹杂物含量是GMAW 100% Ar焊缝的3倍,但CVN吸收能量为66 J,接近GMAW 85% Ar/15% CO2焊缝。结果表明,用GMAW 100% Ar代替FCAW 75% Ar/ 25% CO2,可使吸收的冲击能提高3倍。夹杂物对拉伸性能的影响,没有明确确定为几个因素,除了夹杂物含量,影响焊缝强度和伸长率。总体而言,GMAW的屈服强度和极限拉伸强度差异较小:100% Ar的GMAW为724和918 MPa, 85% Ar/15% CO2的GMAW为746和927 MPa, 75% Ar/25% CO2的FCAW为711和864 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shielding Gas and Inclusion Content Effects on Impact Toughness and Tensile Properties of 410NiMo Steel Welds
The effect of shielding gas on the mechanical and microstructural characteristics of ER410NiMo martensitic stainless steel weldments was investigated. Three weldments with various inclusion contents were manufactured using different shielding gas compositions and welding processes: gas metal arc welding (GMAW) with 100% argon (Ar), GMAW 85% Ar/15% carbon dioxide (CO2), and flux cored arc welding (FCAW) 75% Ar/25% CO2. The inclusions in each weldment were characterized by means of scanning electron microscope observations and energy-dispersive spectroscopy analysis. The weldments underwent postweld heat treatment, after which the chemical composition and reformed austenite proportion were measured to account for microstructural effects. Hardness measurements, tensile tests, and impact toughness tests using the Charpy method were performed. The results showed that the Charpy V-notch (CVN) absorbed energy decreases with increasing inclusion content. The highest CVN absorbed energy, 195 J, was obtained for the GMAW 100% Ar weld, which had the lowest inclusion content. GMAW 85% Ar/15% CO2, with four times more inclusions than the former, had a CVN absorbed energy of 63 J. The current manufacturing process, FCAW 75% Ar/25% CO2, was found to have an inclusion content three times higher than the GMAW 100% Ar weld but a CVN absorbed energy of 66 J, which is close to the GMAW 85% Ar/15% CO2 weld. The results showed that using GMAW 100% Ar as a replacement to FCAW 75% Ar/25 % CO2 would lead to a three-fold improvement in terms of absorbed impact energy. The effect of inclusions on tensile properties, which was not clearly identified as several factors, in addition to inclusion content, affects the weld strength and elongation. Overall, the yield and ultimate tensile strengths differed slightly: 724 and 918 MPa for GMAW 100% Ar, 746 and 927 MPa for GMAW 85% Ar/15% CO2, and 711 and 864 MPa for FCAW 75% Ar/25% CO2, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信