基于簇基方法的海上监视无人机路径规划

IF 0.8 Q3 ENGINEERING, AEROSPACE
P. A. Suseno, T. K. Wardana
{"title":"基于簇基方法的海上监视无人机路径规划","authors":"P. A. Suseno, T. K. Wardana","doi":"10.3846/aviation.2021.14216","DOIUrl":null,"url":null,"abstract":"This paper discusses a method to determine the operation route for unmanned aerial vehicles for maritime surveillance. It is well known that there are several methods to make an aircraft path planning for ground related missions. On the other hand, path planning for maritime purposes is unnoticeable. The major problem of path planning for maritime is the abundant number of nodes which can make the route becomes quite long. Hence, reducing the number of nodes is necessary to rectify this problem. The main method is to separate the surveillance area into a smaller area of operation using clustering methods and then analyze the vulnerable area using the database to create an optimum flight path in each operation area. Although this paper specifically addresses a maritime-related mission, the path planning procedures can be applied to other missions as well. In this research, the input is given from satellite recorded data. Natuna Sea is chosen as the main discussion as the Natuna Sea currently is one of the most vulnerable regions in Indonesia for illegal fishing activity. The result shows that the aircraft path able to cover most of the vulnerable areas while optimizing the route distance.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"UNMANNED AIR VEHICLE PATH PLANNING FOR MARITIME SURVEILLANCE USING CLUSTER-BASE METHOD\",\"authors\":\"P. A. Suseno, T. K. Wardana\",\"doi\":\"10.3846/aviation.2021.14216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a method to determine the operation route for unmanned aerial vehicles for maritime surveillance. It is well known that there are several methods to make an aircraft path planning for ground related missions. On the other hand, path planning for maritime purposes is unnoticeable. The major problem of path planning for maritime is the abundant number of nodes which can make the route becomes quite long. Hence, reducing the number of nodes is necessary to rectify this problem. The main method is to separate the surveillance area into a smaller area of operation using clustering methods and then analyze the vulnerable area using the database to create an optimum flight path in each operation area. Although this paper specifically addresses a maritime-related mission, the path planning procedures can be applied to other missions as well. In this research, the input is given from satellite recorded data. Natuna Sea is chosen as the main discussion as the Natuna Sea currently is one of the most vulnerable regions in Indonesia for illegal fishing activity. The result shows that the aircraft path able to cover most of the vulnerable areas while optimizing the route distance.\",\"PeriodicalId\":51910,\"journal\":{\"name\":\"Aviation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/aviation.2021.14216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2021.14216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了一种确定海上监视无人机作业路线的方法。众所周知,对地面相关任务进行飞机路径规划有几种方法。另一方面,以海上为目的的路径规划是不引人注目的。海上航路规划的主要问题是节点数量过多,使得航路变得很长。因此,有必要减少节点的数量来纠正这个问题。主要方法是利用聚类方法将监视区域划分为较小的作战区域,然后利用数据库对脆弱区域进行分析,在每个作战区域内创建最优飞行路径。虽然本文专门针对与海洋有关的任务,但路径规划程序也可以应用于其他任务。在本研究中,输入来自卫星记录数据。之所以选择纳土纳海作为主要讨论区域,是因为纳土纳海目前是印尼最容易发生非法捕鱼活动的地区之一。结果表明,在优化航路距离的同时,飞机航路能够覆盖大部分脆弱区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNMANNED AIR VEHICLE PATH PLANNING FOR MARITIME SURVEILLANCE USING CLUSTER-BASE METHOD
This paper discusses a method to determine the operation route for unmanned aerial vehicles for maritime surveillance. It is well known that there are several methods to make an aircraft path planning for ground related missions. On the other hand, path planning for maritime purposes is unnoticeable. The major problem of path planning for maritime is the abundant number of nodes which can make the route becomes quite long. Hence, reducing the number of nodes is necessary to rectify this problem. The main method is to separate the surveillance area into a smaller area of operation using clustering methods and then analyze the vulnerable area using the database to create an optimum flight path in each operation area. Although this paper specifically addresses a maritime-related mission, the path planning procedures can be applied to other missions as well. In this research, the input is given from satellite recorded data. Natuna Sea is chosen as the main discussion as the Natuna Sea currently is one of the most vulnerable regions in Indonesia for illegal fishing activity. The result shows that the aircraft path able to cover most of the vulnerable areas while optimizing the route distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aviation
Aviation ENGINEERING, AEROSPACE-
CiteScore
2.40
自引率
10.00%
发文量
20
审稿时长
15 weeks
期刊介绍: CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信