D. Kokkinos, H. Dakhil, A. Wierschem, H. Briesen, A. Braun
{"title":"不使用增稠剂的盐杜氏藻在高剪切速率下的变形和破裂。","authors":"D. Kokkinos, H. Dakhil, A. Wierschem, H. Briesen, A. Braun","doi":"10.3233/BIR-15057","DOIUrl":null,"url":null,"abstract":"BACKGROUND High-density cultures require operating below the critical threshold of shear stress, in order to avoid reducing the specific growth rate of the cells. When determining this threshold, direct inspection of the cells in flow provides insight into the conditions of shearing. OBJECTIVE Aim of this study was using a novel rheo-optical setup for the observation of cells in laminar shear flow and the determination of the critical shear stress required to damage them in their natural environment. METHODS Dunaliella salina cells were sheared and observed in flow for shear stresses of up to 90 Pa, at ambient temperature, without adding thickeners. The critical shear stress was determined by fitting a hydrodynamics-based criterion to the experimental data on the percentage of deformed cells after shearing. RESULTS Single cells, clusters and strings of cells were visible in shear flow. The strings formed at maximum shear stresses of 10 Pa or higher. Cells lost motility for maximum shear stresses higher than 15 Pa, and more than 80% of the cells were deformed at maximum shear stresses higher than 60 Pa. The estimated critical shear stress was 18 Pa. CONCLUSIONS Shear stresses higher than 18 Pa should be avoided when cultivating D. salina.","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"53 1 1","pages":"1-11"},"PeriodicalIF":1.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-15057","citationCount":"6","resultStr":"{\"title\":\"Deformation and rupture of Dunaliella salina at high shear rates without the use of thickeners.\",\"authors\":\"D. Kokkinos, H. Dakhil, A. Wierschem, H. Briesen, A. Braun\",\"doi\":\"10.3233/BIR-15057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND High-density cultures require operating below the critical threshold of shear stress, in order to avoid reducing the specific growth rate of the cells. When determining this threshold, direct inspection of the cells in flow provides insight into the conditions of shearing. OBJECTIVE Aim of this study was using a novel rheo-optical setup for the observation of cells in laminar shear flow and the determination of the critical shear stress required to damage them in their natural environment. METHODS Dunaliella salina cells were sheared and observed in flow for shear stresses of up to 90 Pa, at ambient temperature, without adding thickeners. The critical shear stress was determined by fitting a hydrodynamics-based criterion to the experimental data on the percentage of deformed cells after shearing. RESULTS Single cells, clusters and strings of cells were visible in shear flow. The strings formed at maximum shear stresses of 10 Pa or higher. Cells lost motility for maximum shear stresses higher than 15 Pa, and more than 80% of the cells were deformed at maximum shear stresses higher than 60 Pa. The estimated critical shear stress was 18 Pa. CONCLUSIONS Shear stresses higher than 18 Pa should be avoided when cultivating D. salina.\",\"PeriodicalId\":9167,\"journal\":{\"name\":\"Biorheology\",\"volume\":\"53 1 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BIR-15057\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biorheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BIR-15057\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-15057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Deformation and rupture of Dunaliella salina at high shear rates without the use of thickeners.
BACKGROUND High-density cultures require operating below the critical threshold of shear stress, in order to avoid reducing the specific growth rate of the cells. When determining this threshold, direct inspection of the cells in flow provides insight into the conditions of shearing. OBJECTIVE Aim of this study was using a novel rheo-optical setup for the observation of cells in laminar shear flow and the determination of the critical shear stress required to damage them in their natural environment. METHODS Dunaliella salina cells were sheared and observed in flow for shear stresses of up to 90 Pa, at ambient temperature, without adding thickeners. The critical shear stress was determined by fitting a hydrodynamics-based criterion to the experimental data on the percentage of deformed cells after shearing. RESULTS Single cells, clusters and strings of cells were visible in shear flow. The strings formed at maximum shear stresses of 10 Pa or higher. Cells lost motility for maximum shear stresses higher than 15 Pa, and more than 80% of the cells were deformed at maximum shear stresses higher than 60 Pa. The estimated critical shear stress was 18 Pa. CONCLUSIONS Shear stresses higher than 18 Pa should be avoided when cultivating D. salina.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.