基于CNTFET的全微分一阶全通滤波器

IF 2.2 4区 计算机科学 Q2 Computer Science
M. I. Masud, Iqbal A. Khan
{"title":"基于CNTFET的全微分一阶全通滤波器","authors":"M. I. Masud, Iqbal A. Khan","doi":"10.32604/csse.2023.027570","DOIUrl":null,"url":null,"abstract":"A novel, carbon nanotube field effect transistor (CNTFET) based fully differential first order all pass filter (FDFAPF) circuit configuration is presented. The FDFAPF uses CNTFET based negative transconductors (NTs) and positive transconductors (PTs) in its realization. The proposed circuit topology employs two PTs, two NTs, two resistors and one capacitor. All the passive components of the realized topology are grounded. Active only fully differential first order all pass filter (AO-FDFAPF) topology is also derived from the proposed FDFAPF. The electronic tunability of the AO-FDFAPF is obtained by controlling the employed CNTFET based varactor. A tunabilty of pole frequency in the range of 10.5 to 26 GHz is obtained. Both the circuits are potential candidates for high frequency fully differential analog signal processing applications. As compared to prior state-of-the-art works, both the realized topologies have achieved highest pole frequency and lowest power dissipation. Moreover, they utilize compact circuit structures and suitable for low voltage applications. Moreover, both topologies work equally well in the deep submicron. The proposed filters are analyzed and verified through HPSPICE simulations by utilizing Stanford CNTFET model at 16 nm technology node. It is observed that the proposed circuit simulation outcomes verify the theory.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"44 1","pages":"2425-2438"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CNTFET Based Fully Differential First Order All Pass Filter\",\"authors\":\"M. I. Masud, Iqbal A. Khan\",\"doi\":\"10.32604/csse.2023.027570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel, carbon nanotube field effect transistor (CNTFET) based fully differential first order all pass filter (FDFAPF) circuit configuration is presented. The FDFAPF uses CNTFET based negative transconductors (NTs) and positive transconductors (PTs) in its realization. The proposed circuit topology employs two PTs, two NTs, two resistors and one capacitor. All the passive components of the realized topology are grounded. Active only fully differential first order all pass filter (AO-FDFAPF) topology is also derived from the proposed FDFAPF. The electronic tunability of the AO-FDFAPF is obtained by controlling the employed CNTFET based varactor. A tunabilty of pole frequency in the range of 10.5 to 26 GHz is obtained. Both the circuits are potential candidates for high frequency fully differential analog signal processing applications. As compared to prior state-of-the-art works, both the realized topologies have achieved highest pole frequency and lowest power dissipation. Moreover, they utilize compact circuit structures and suitable for low voltage applications. Moreover, both topologies work equally well in the deep submicron. The proposed filters are analyzed and verified through HPSPICE simulations by utilizing Stanford CNTFET model at 16 nm technology node. It is observed that the proposed circuit simulation outcomes verify the theory.\",\"PeriodicalId\":50634,\"journal\":{\"name\":\"Computer Systems Science and Engineering\",\"volume\":\"44 1\",\"pages\":\"2425-2438\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Systems Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32604/csse.2023.027570\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Systems Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/csse.2023.027570","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于全微分一阶全通滤波器(FDFAPF)的新型碳纳米管场效应晶体管(CNTFET)电路结构。FDFAPF在其实现中使用基于CNTFET的负电导器(nt)和正电导器(PTs)。所提出的电路拓扑采用两个pt、两个nt、两个电阻和一个电容。所实现拓扑的所有无源元件均接地。有源全微分一阶全通滤波器(AO-FDFAPF)拓扑也由所提出的FDFAPF导出。通过控制所采用的基于CNTFET的变容来实现AO-FDFAPF的电子可调性。在10.5 ~ 26ghz范围内具有极频可调性。这两种电路都是高频全差分模拟信号处理应用的潜在候选者。与现有的先进技术相比,这两种拓扑结构都实现了最高的极点频率和最低的功耗。此外,它们采用紧凑的电路结构,适合低电压应用。此外,这两种拓扑结构在深亚微米中同样有效。利用Stanford CNTFET模型在16nm技术节点上进行HPSPICE仿真,对所提出的滤波器进行了分析和验证。所提出的电路仿真结果验证了理论的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNTFET Based Fully Differential First Order All Pass Filter
A novel, carbon nanotube field effect transistor (CNTFET) based fully differential first order all pass filter (FDFAPF) circuit configuration is presented. The FDFAPF uses CNTFET based negative transconductors (NTs) and positive transconductors (PTs) in its realization. The proposed circuit topology employs two PTs, two NTs, two resistors and one capacitor. All the passive components of the realized topology are grounded. Active only fully differential first order all pass filter (AO-FDFAPF) topology is also derived from the proposed FDFAPF. The electronic tunability of the AO-FDFAPF is obtained by controlling the employed CNTFET based varactor. A tunabilty of pole frequency in the range of 10.5 to 26 GHz is obtained. Both the circuits are potential candidates for high frequency fully differential analog signal processing applications. As compared to prior state-of-the-art works, both the realized topologies have achieved highest pole frequency and lowest power dissipation. Moreover, they utilize compact circuit structures and suitable for low voltage applications. Moreover, both topologies work equally well in the deep submicron. The proposed filters are analyzed and verified through HPSPICE simulations by utilizing Stanford CNTFET model at 16 nm technology node. It is observed that the proposed circuit simulation outcomes verify the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Systems Science and Engineering
Computer Systems Science and Engineering 工程技术-计算机:理论方法
CiteScore
3.10
自引率
13.60%
发文量
308
审稿时长
>12 weeks
期刊介绍: The journal is devoted to the publication of high quality papers on theoretical developments in computer systems science, and their applications in computer systems engineering. Original research papers, state-of-the-art reviews and technical notes are invited for publication. All papers will be refereed by acknowledged experts in the field, and may be (i) accepted without change, (ii) require amendment and subsequent re-refereeing, or (iii) be rejected on the grounds of either relevance or content. The submission of a paper implies that, if accepted for publication, it will not be published elsewhere in the same form, in any language, without the prior consent of the Publisher.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信