G. Paskaleva, A. Mazak-Huemer, Marlène Villeneuve, Johannes Waldhart
{"title":"从领域知识到软件模型的自动转换:隧道领域中的EXCEL2UML","authors":"G. Paskaleva, A. Mazak-Huemer, Marlène Villeneuve, Johannes Waldhart","doi":"10.36680/j.itcon.2023.019","DOIUrl":null,"url":null,"abstract":"The development of software tools is a collaborative process involving both the domain experts and the software engineers. This requires efficient communication considering different expertise and perspectives. Additionally, the two groups utilize language and communication tools in disparate ways. This, in turn, may lead to hidden misunderstandings in the requirement analysis phase and potentially result in implementation problems later on, that is difficult and costly to correct. In this paper, we demonstrate the above mentioned challenge via a use case from the tunneling domain. In particular, during the requirement analysis phase for a software capable of handling the data model of the subsoil. The domain experts in the field can best express the complexity of their domain by describing its artifacts, which in most cases are incomprehensible to the software engineers. We outline a method that interleaves requirement analysis and software modeling to enable an iterative increase of the accuracy and completeness of the information extracted from those artifacts and integrated into a flexible software model, which can produce testable software code automatically. Furthermore, we present a prototypical implementation of our method and a preliminary evaluation of the approach.","PeriodicalId":51624,"journal":{"name":"Journal of Information Technology in Construction","volume":"28 1","pages":"360-384"},"PeriodicalIF":3.6000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated translation from domain knowledge to software model: EXCEL2UML in the tunneling domain\",\"authors\":\"G. Paskaleva, A. Mazak-Huemer, Marlène Villeneuve, Johannes Waldhart\",\"doi\":\"10.36680/j.itcon.2023.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of software tools is a collaborative process involving both the domain experts and the software engineers. This requires efficient communication considering different expertise and perspectives. Additionally, the two groups utilize language and communication tools in disparate ways. This, in turn, may lead to hidden misunderstandings in the requirement analysis phase and potentially result in implementation problems later on, that is difficult and costly to correct. In this paper, we demonstrate the above mentioned challenge via a use case from the tunneling domain. In particular, during the requirement analysis phase for a software capable of handling the data model of the subsoil. The domain experts in the field can best express the complexity of their domain by describing its artifacts, which in most cases are incomprehensible to the software engineers. We outline a method that interleaves requirement analysis and software modeling to enable an iterative increase of the accuracy and completeness of the information extracted from those artifacts and integrated into a flexible software model, which can produce testable software code automatically. Furthermore, we present a prototypical implementation of our method and a preliminary evaluation of the approach.\",\"PeriodicalId\":51624,\"journal\":{\"name\":\"Journal of Information Technology in Construction\",\"volume\":\"28 1\",\"pages\":\"360-384\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Technology in Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36680/j.itcon.2023.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36680/j.itcon.2023.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Automated translation from domain knowledge to software model: EXCEL2UML in the tunneling domain
The development of software tools is a collaborative process involving both the domain experts and the software engineers. This requires efficient communication considering different expertise and perspectives. Additionally, the two groups utilize language and communication tools in disparate ways. This, in turn, may lead to hidden misunderstandings in the requirement analysis phase and potentially result in implementation problems later on, that is difficult and costly to correct. In this paper, we demonstrate the above mentioned challenge via a use case from the tunneling domain. In particular, during the requirement analysis phase for a software capable of handling the data model of the subsoil. The domain experts in the field can best express the complexity of their domain by describing its artifacts, which in most cases are incomprehensible to the software engineers. We outline a method that interleaves requirement analysis and software modeling to enable an iterative increase of the accuracy and completeness of the information extracted from those artifacts and integrated into a flexible software model, which can produce testable software code automatically. Furthermore, we present a prototypical implementation of our method and a preliminary evaluation of the approach.