K.N. Kassylkassova, Zhanna Yessengaliyeva, G. Urazboev, Ayman Kassylkassova
{"title":"卷积神经网络与循环神经网络集成的优化方法","authors":"K.N. Kassylkassova, Zhanna Yessengaliyeva, G. Urazboev, Ayman Kassylkassova","doi":"10.32523/2306-6172-2023-11-2-40-56","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, convolutional neural networks have been widely used in image processing and have shown good results. Particularly useful was their ability to automatically extract image features (textures and shapes of objects). The article proposes a method that improves the accuracy and speed of recognition of an ultra-precise neural network based on image recognition of people’s faces. At first, a recurrent neural network is introduced into the convolutional neural network, thereby studying the characteristics of the image more deeply. Deep image characteristics are studied in parallel using a convolutional and recurrent neural network. In line with the idea of skipping the ResNet convolution layer, a new ShortCut3- ResNet residual module is built. A double optimization model is created to fully optimize the convolution process. A study of the influence of various parameters of a convolutional neural network on network performance is demonstrated, also analyzed using simulation experiments. As a result, the optimal parameters of the convolutional neural network are established. Ex- periments show that the method presented in this paper can study various images of people’s faces regardless of age, gender, and also improves the accuracy of feature extraction and image recognition ability.","PeriodicalId":42910,"journal":{"name":"Eurasian Journal of Mathematical and Computer Applications","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPTIMIZATION METHOD FOR INTEGRATION OF CONVOLUTIONAL AND RECURRENT NEURAL NETWORK\",\"authors\":\"K.N. Kassylkassova, Zhanna Yessengaliyeva, G. Urazboev, Ayman Kassylkassova\",\"doi\":\"10.32523/2306-6172-2023-11-2-40-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, convolutional neural networks have been widely used in image processing and have shown good results. Particularly useful was their ability to automatically extract image features (textures and shapes of objects). The article proposes a method that improves the accuracy and speed of recognition of an ultra-precise neural network based on image recognition of people’s faces. At first, a recurrent neural network is introduced into the convolutional neural network, thereby studying the characteristics of the image more deeply. Deep image characteristics are studied in parallel using a convolutional and recurrent neural network. In line with the idea of skipping the ResNet convolution layer, a new ShortCut3- ResNet residual module is built. A double optimization model is created to fully optimize the convolution process. A study of the influence of various parameters of a convolutional neural network on network performance is demonstrated, also analyzed using simulation experiments. As a result, the optimal parameters of the convolutional neural network are established. Ex- periments show that the method presented in this paper can study various images of people’s faces regardless of age, gender, and also improves the accuracy of feature extraction and image recognition ability.\",\"PeriodicalId\":42910,\"journal\":{\"name\":\"Eurasian Journal of Mathematical and Computer Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Mathematical and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2023-11-2-40-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Mathematical and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2023-11-2-40-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
OPTIMIZATION METHOD FOR INTEGRATION OF CONVOLUTIONAL AND RECURRENT NEURAL NETWORK
Abstract In recent years, convolutional neural networks have been widely used in image processing and have shown good results. Particularly useful was their ability to automatically extract image features (textures and shapes of objects). The article proposes a method that improves the accuracy and speed of recognition of an ultra-precise neural network based on image recognition of people’s faces. At first, a recurrent neural network is introduced into the convolutional neural network, thereby studying the characteristics of the image more deeply. Deep image characteristics are studied in parallel using a convolutional and recurrent neural network. In line with the idea of skipping the ResNet convolution layer, a new ShortCut3- ResNet residual module is built. A double optimization model is created to fully optimize the convolution process. A study of the influence of various parameters of a convolutional neural network on network performance is demonstrated, also analyzed using simulation experiments. As a result, the optimal parameters of the convolutional neural network are established. Ex- periments show that the method presented in this paper can study various images of people’s faces regardless of age, gender, and also improves the accuracy of feature extraction and image recognition ability.
期刊介绍:
Eurasian Journal of Mathematical and Computer Applications (EJMCA) publishes carefully selected original research papers in all areas of Applied mathematics first of all from Europe and Asia. However papers by mathematicians from other continents are also welcome. From time to time Eurasian Journal of Mathematical and Computer Applications (EJMCA) will also publish survey papers. Eurasian Mathematical Journal publishes 4 issues in a year. A working language of the journal is English. Main topics are: - Mathematical methods and modeling in mechanics, mining, biology, geophysics, electrodynamics, acoustics, industry. - Inverse problems of mathematical physics: theory and computational approaches. - Medical and industry tomography. - Computer applications: distributed information systems, decision-making systems, embedded systems, information security, graphics.