具有tresca边界条件的薄域短记忆粘弹性问题研究

A. Saadallah, F. Yazid, Nadhir Chougui, F.S. Djeradi
{"title":"具有tresca边界条件的薄域短记忆粘弹性问题研究","authors":"A. Saadallah, F. Yazid, Nadhir Chougui, F.S. Djeradi","doi":"10.32523/2306-6172-2023-11-2-116-129","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in the study of the asymptotic behavior of non linear problem in a quasistatic regime in a thin domain with Tresca boundary conditions. In the first step, we derive a variational formulation of the mechanical problem and prove the existence and uniqueness of the weak solution. We study the limit when the ε tends to zero, we prove the convergence of the unknowns which are the displacement and the velocity and we obtain the limit problem and the specific Reynolds equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY OF THE VISCOELASTIC PROBLEMS WITH SHORT MEMORY IN A THIN DOMAIN WITH TRESCA BOUNDARY CONDITIONS\",\"authors\":\"A. Saadallah, F. Yazid, Nadhir Chougui, F.S. Djeradi\",\"doi\":\"10.32523/2306-6172-2023-11-2-116-129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are interested in the study of the asymptotic behavior of non linear problem in a quasistatic regime in a thin domain with Tresca boundary conditions. In the first step, we derive a variational formulation of the mechanical problem and prove the existence and uniqueness of the weak solution. We study the limit when the ε tends to zero, we prove the convergence of the unknowns which are the displacement and the velocity and we obtain the limit problem and the specific Reynolds equation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2023-11-2-116-129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2023-11-2-116-129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究具有Tresca边界条件的准静态区域的非线性问题的渐近性质。在第一步,我们推导了力学问题的变分形式,并证明了弱解的存在唯一性。研究了ε趋于零时的极限,证明了位移和速度这两个未知量的收敛性,得到了极限问题和具体的雷诺方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
STUDY OF THE VISCOELASTIC PROBLEMS WITH SHORT MEMORY IN A THIN DOMAIN WITH TRESCA BOUNDARY CONDITIONS
In this paper, we are interested in the study of the asymptotic behavior of non linear problem in a quasistatic regime in a thin domain with Tresca boundary conditions. In the first step, we derive a variational formulation of the mechanical problem and prove the existence and uniqueness of the weak solution. We study the limit when the ε tends to zero, we prove the convergence of the unknowns which are the displacement and the velocity and we obtain the limit problem and the specific Reynolds equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信