冻土非线性传热模型的求解方法

B. Rysbaiuly, N. Rysbaeva
{"title":"冻土非线性传热模型的求解方法","authors":"B. Rysbaiuly, N. Rysbaeva","doi":"10.32523/2306-6172-2020-8-4-83-96","DOIUrl":null,"url":null,"abstract":"The nonlinear model of heat transfer in freezing soil was corrected using the results of experimental studies of other scientists. A nonlinear difference equation is constructed and a priori estimates are obtained for solving nonlinear algebraic equations. The nonlinear difference problem is solved by Newton’s method. The paper also considers the problem of choosing the initial approximation of Newton’s method. Using a priori estimates, the quadratic convergence of the iterative method is proved. Numerical calculations have been performed. A strong discrepancy in results between linear and nonlinear difference problem is shown using graphical representation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THE METHOD OF SOLVING NONLINEAR HEAT TRANSFER MODEL IN FREEZING SOIL\",\"authors\":\"B. Rysbaiuly, N. Rysbaeva\",\"doi\":\"10.32523/2306-6172-2020-8-4-83-96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear model of heat transfer in freezing soil was corrected using the results of experimental studies of other scientists. A nonlinear difference equation is constructed and a priori estimates are obtained for solving nonlinear algebraic equations. The nonlinear difference problem is solved by Newton’s method. The paper also considers the problem of choosing the initial approximation of Newton’s method. Using a priori estimates, the quadratic convergence of the iterative method is proved. Numerical calculations have been performed. A strong discrepancy in results between linear and nonlinear difference problem is shown using graphical representation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2020-8-4-83-96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2020-8-4-83-96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用前人的实验研究结果,对冻土传热非线性模型进行了修正。构造了一个非线性差分方程,得到了求解非线性代数方程的先验估计。用牛顿法求解了非线性差分问题。本文还讨论了牛顿法初始近似的选择问题。利用先验估计,证明了迭代方法的二次收敛性。进行了数值计算。用图形表示了线性和非线性差分问题的结果之间的强烈差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
THE METHOD OF SOLVING NONLINEAR HEAT TRANSFER MODEL IN FREEZING SOIL
The nonlinear model of heat transfer in freezing soil was corrected using the results of experimental studies of other scientists. A nonlinear difference equation is constructed and a priori estimates are obtained for solving nonlinear algebraic equations. The nonlinear difference problem is solved by Newton’s method. The paper also considers the problem of choosing the initial approximation of Newton’s method. Using a priori estimates, the quadratic convergence of the iterative method is proved. Numerical calculations have been performed. A strong discrepancy in results between linear and nonlinear difference problem is shown using graphical representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信