{"title":"基于电子表格的管网教学分析","authors":"D. Brkić","doi":"10.31219/osf.io/7ynvw","DOIUrl":null,"url":null,"abstract":"An example of hydraulic design project for teaching purpose is presented. Students’ task is to develop a looped distribution network for water (i.e. to determinate node consumptions, disposal of pipes, and finally to calculate flow rates in the network’s pipes and their optimal diameters). This can be accomplished by using the original Hardy Cross method, the improved Hardy Cross method, the node-loop method, etc. For the improved Hardy Cross method and the node-loop method, use of matrix calculation is mandatory. Because the analysis of water distribution networks is an essential component of civil engineering water resources curricula, the adequate technique better than the hand-oriented one is desired in order to increase students’ understanding of this kind of engineering systems and of relevant design issues in more concise and effective way. The described use of spreadsheet solvers is more than suitable for the purpose, especially knowing that spreadsheet solvers are much more matrix friendly compared with the hand-orientated calculation. Although matrix calculation is not mandatory for the original Hardy Cross method, even in that case it is preferred for better understanding of the problem. The application of commonly available spreadsheet software (Microsoft Excel) including two real classroom tasks is presented.","PeriodicalId":41809,"journal":{"name":"Spreadsheets in Education","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2016-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Spreadsheet-Based Pipe Networks Analysis for Teaching and Learning Purpose\",\"authors\":\"D. Brkić\",\"doi\":\"10.31219/osf.io/7ynvw\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An example of hydraulic design project for teaching purpose is presented. Students’ task is to develop a looped distribution network for water (i.e. to determinate node consumptions, disposal of pipes, and finally to calculate flow rates in the network’s pipes and their optimal diameters). This can be accomplished by using the original Hardy Cross method, the improved Hardy Cross method, the node-loop method, etc. For the improved Hardy Cross method and the node-loop method, use of matrix calculation is mandatory. Because the analysis of water distribution networks is an essential component of civil engineering water resources curricula, the adequate technique better than the hand-oriented one is desired in order to increase students’ understanding of this kind of engineering systems and of relevant design issues in more concise and effective way. The described use of spreadsheet solvers is more than suitable for the purpose, especially knowing that spreadsheet solvers are much more matrix friendly compared with the hand-orientated calculation. Although matrix calculation is not mandatory for the original Hardy Cross method, even in that case it is preferred for better understanding of the problem. The application of commonly available spreadsheet software (Microsoft Excel) including two real classroom tasks is presented.\",\"PeriodicalId\":41809,\"journal\":{\"name\":\"Spreadsheets in Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spreadsheets in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31219/osf.io/7ynvw\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spreadsheets in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/7ynvw","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spreadsheet-Based Pipe Networks Analysis for Teaching and Learning Purpose
An example of hydraulic design project for teaching purpose is presented. Students’ task is to develop a looped distribution network for water (i.e. to determinate node consumptions, disposal of pipes, and finally to calculate flow rates in the network’s pipes and their optimal diameters). This can be accomplished by using the original Hardy Cross method, the improved Hardy Cross method, the node-loop method, etc. For the improved Hardy Cross method and the node-loop method, use of matrix calculation is mandatory. Because the analysis of water distribution networks is an essential component of civil engineering water resources curricula, the adequate technique better than the hand-oriented one is desired in order to increase students’ understanding of this kind of engineering systems and of relevant design issues in more concise and effective way. The described use of spreadsheet solvers is more than suitable for the purpose, especially knowing that spreadsheet solvers are much more matrix friendly compared with the hand-orientated calculation. Although matrix calculation is not mandatory for the original Hardy Cross method, even in that case it is preferred for better understanding of the problem. The application of commonly available spreadsheet software (Microsoft Excel) including two real classroom tasks is presented.