齐墩果酸通过调节磷脂酰肌醇3激酶/蛋白激酶B/葡萄糖转运蛋白4型信号通路对糖尿病小鼠心肌损伤的影响

IF 0.4 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Zhumei Sun, Xinyu Shang, Jiashuo Li, Jinkun Xi, Fengmei Xing, Wenji Liang, Xiaohan Yu, Shuying Han, Shuang Zhao
{"title":"齐墩果酸通过调节磷脂酰肌醇3激酶/蛋白激酶B/葡萄糖转运蛋白4型信号通路对糖尿病小鼠心肌损伤的影响","authors":"Zhumei Sun, Xinyu Shang, Jiashuo Li, Jinkun Xi, Fengmei Xing, Wenji Liang, Xiaohan Yu, Shuying Han, Shuang Zhao","doi":"10.36468/pharmaceutical-sciences.1087","DOIUrl":null,"url":null,"abstract":"One of the leading causes of diabetes-related deaths is myocardial damage, which may be the cause of heart failure in people with type 2 diabetes mellitus. The objective of the research was to look at the impact of coronary failure with kind a pair of type 2 diabetes mellitus. This project aimed to explore the protective impact of oleanolic acid on myocardial damage in type 2 diabetes mellitus and to investigate the connected mechanism. Specific pathogen free grade db/db male mice were elected as model, while the Db/m mice were opted for control. Different doses of drug intervention were performed and the general condition, cardiac function, blood glucose, blood lipids, degree of myocardial injury, and degree of oxidative stress were examined by morphological examination of myocardial tissues, biochemical examination, and gene and protein amount detection. The results showed that lactate dehydrogenase, creatine kinase isoenzyme, total cholesterol, triglycerides and malondialdehyde levels in serum of Db/db mice were increased, while phosphatidylinositol 3 kinase, protein kinase B, glucose transporter 4 expression and superoxide dismutase level in myocardial tissue were decreased. After using oleanolic acid, the serum concentrations of lactate dehydrogenase, creatine kinase isoenzyme, total cholesterol, triglycerides and malondialdehyde were declined in Db/db mice, while phosphatidylinositol 3 kinase, protein kinase B, glucose transporter 4 expression and superoxide dismutase level were rised. The results recommend that oleanolic acid has protective impact on cardiac muscle injury in Db/db mice and conjointly the mechanism could also be correlated with promoting the activation of phosphatidylinositol 3 kinase/protein kinase B/glucose transporter 4 signal transduction.","PeriodicalId":13292,"journal":{"name":"Indian Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Oleanolic Acid on Myocardial Injury in Diabetic Mice by Regulating Phosphatidylinositol 3 Kinase/Protein Kinase B/Glucose Transporter Type 4 Signalling Pathway\",\"authors\":\"Zhumei Sun, Xinyu Shang, Jiashuo Li, Jinkun Xi, Fengmei Xing, Wenji Liang, Xiaohan Yu, Shuying Han, Shuang Zhao\",\"doi\":\"10.36468/pharmaceutical-sciences.1087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the leading causes of diabetes-related deaths is myocardial damage, which may be the cause of heart failure in people with type 2 diabetes mellitus. The objective of the research was to look at the impact of coronary failure with kind a pair of type 2 diabetes mellitus. This project aimed to explore the protective impact of oleanolic acid on myocardial damage in type 2 diabetes mellitus and to investigate the connected mechanism. Specific pathogen free grade db/db male mice were elected as model, while the Db/m mice were opted for control. Different doses of drug intervention were performed and the general condition, cardiac function, blood glucose, blood lipids, degree of myocardial injury, and degree of oxidative stress were examined by morphological examination of myocardial tissues, biochemical examination, and gene and protein amount detection. The results showed that lactate dehydrogenase, creatine kinase isoenzyme, total cholesterol, triglycerides and malondialdehyde levels in serum of Db/db mice were increased, while phosphatidylinositol 3 kinase, protein kinase B, glucose transporter 4 expression and superoxide dismutase level in myocardial tissue were decreased. After using oleanolic acid, the serum concentrations of lactate dehydrogenase, creatine kinase isoenzyme, total cholesterol, triglycerides and malondialdehyde were declined in Db/db mice, while phosphatidylinositol 3 kinase, protein kinase B, glucose transporter 4 expression and superoxide dismutase level were rised. The results recommend that oleanolic acid has protective impact on cardiac muscle injury in Db/db mice and conjointly the mechanism could also be correlated with promoting the activation of phosphatidylinositol 3 kinase/protein kinase B/glucose transporter 4 signal transduction.\",\"PeriodicalId\":13292,\"journal\":{\"name\":\"Indian Journal of Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.36468/pharmaceutical-sciences.1087\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.36468/pharmaceutical-sciences.1087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病相关死亡的主要原因之一是心肌损伤,这可能是2型糖尿病患者心力衰竭的原因。这项研究的目的是观察冠状动脉衰竭对2型糖尿病患者的影响。本课题旨在探讨齐墩果酸对2型糖尿病心肌损伤的保护作用及其机制。以特定无病原菌级db/db雄性小鼠为模型,以db/ m级小鼠为对照。给予不同剂量的药物干预,通过心肌组织形态学检查、生化检查、基因蛋白量检测,检测大鼠一般情况、心功能、血糖、血脂、心肌损伤程度、氧化应激程度。结果表明,Db/ Db小鼠血清乳酸脱氢酶、肌酸激酶同工酶、总胆固醇、甘油三酯和丙二醛水平升高,心肌组织中磷脂酰肌醇3激酶、蛋白激酶B、葡萄糖转运蛋白4表达和超氧化物歧化酶水平降低。齐墩果酸使Db/ Db小鼠血清乳酸脱氢酶、肌酸激酶同工酶、总胆固醇、甘油三酯和丙二醛浓度降低,磷脂酰肌醇3激酶、蛋白激酶B、葡萄糖转运蛋白4表达和超氧化物歧化酶水平升高。结果提示齐墩果酸对Db/ Db小鼠心肌损伤具有保护作用,其机制可能与促进磷脂酰肌醇3激酶/蛋白激酶B/葡萄糖转运蛋白4信号转导的激活有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Oleanolic Acid on Myocardial Injury in Diabetic Mice by Regulating Phosphatidylinositol 3 Kinase/Protein Kinase B/Glucose Transporter Type 4 Signalling Pathway
One of the leading causes of diabetes-related deaths is myocardial damage, which may be the cause of heart failure in people with type 2 diabetes mellitus. The objective of the research was to look at the impact of coronary failure with kind a pair of type 2 diabetes mellitus. This project aimed to explore the protective impact of oleanolic acid on myocardial damage in type 2 diabetes mellitus and to investigate the connected mechanism. Specific pathogen free grade db/db male mice were elected as model, while the Db/m mice were opted for control. Different doses of drug intervention were performed and the general condition, cardiac function, blood glucose, blood lipids, degree of myocardial injury, and degree of oxidative stress were examined by morphological examination of myocardial tissues, biochemical examination, and gene and protein amount detection. The results showed that lactate dehydrogenase, creatine kinase isoenzyme, total cholesterol, triglycerides and malondialdehyde levels in serum of Db/db mice were increased, while phosphatidylinositol 3 kinase, protein kinase B, glucose transporter 4 expression and superoxide dismutase level in myocardial tissue were decreased. After using oleanolic acid, the serum concentrations of lactate dehydrogenase, creatine kinase isoenzyme, total cholesterol, triglycerides and malondialdehyde were declined in Db/db mice, while phosphatidylinositol 3 kinase, protein kinase B, glucose transporter 4 expression and superoxide dismutase level were rised. The results recommend that oleanolic acid has protective impact on cardiac muscle injury in Db/db mice and conjointly the mechanism could also be correlated with promoting the activation of phosphatidylinositol 3 kinase/protein kinase B/glucose transporter 4 signal transduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 months
期刊介绍: The Indian Journal of Pharmaceutical Sciences (IJPS) is a bi-monthly Journal, which publishes original research work that contributes significantly to further the scientific knowledge in Pharmaceutical Sciences (Pharmaceutical Technology, Pharmaceutics, Biopharmaceutics, Pharmacokinetics, Pharmaceutical/Medicinal Chemistry, Computational Chemistry and Molecular Drug Design, Pharmacognosy and Phytochemistry, Pharmacology and Therapeutics, Pharmaceutical Analysis, Pharmacy Practice, Clinical and Hospital Pharmacy, Pharmacovigilance, Pharmacoepidemiology, Pharmacoeconomics, Drug Information, Patient Counselling, Adverse Drug Reactions Monitoring, Medication Errors, Medication Optimization, Medication Therapy Management, Cell Biology, Genomics and Proteomics, Pharmacogenomics, Bioinformatics and Biotechnology of Pharmaceutical Interest). The Journal publishes original research work either as a Full Research Paper or as a Short Communication. Review Articles on current topics in Pharmaceutical Sciences are also considered for publication by the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信