基于Pareto和改进粒子群算法的风电系统低频振荡阻尼控制研究

IF 2.5 4区 综合性期刊 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yu Song, Shouyuan Wu
{"title":"基于Pareto和改进粒子群算法的风电系统低频振荡阻尼控制研究","authors":"Yu Song, Shouyuan Wu","doi":"10.3390/app131810054","DOIUrl":null,"url":null,"abstract":"Aiming at the low-frequency oscillation problem of high-proportion wind power and energy storage connected to the power system, this paper establishes a system small signal model according to the matrix similarity theory, which lays a foundation for the research on oscillation characteristics, mechanism analysis, and suppression measures. Combined with the different installation positions of the inverter-side converter and the inverter-side POD (Power Oscillation Damper) controller of the energy storage device, the suppression mechanism and damping oscillation ability of the two on low-frequency oscillation were analyzed. Under multiple optimization objectives, the parameters of the damping controller are optimized by Pareto and improved particle swarm algorithms. Finally, through Matlab/Simulink simulation, the effectiveness of the Pareto and improved particle swarm algorithm in suppressing low-frequency oscillation of the system is verified.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Low-Frequency Oscillation Damping Control of Wind Storage System Based on Pareto and Improved Particle Swarm Algorithm\",\"authors\":\"Yu Song, Shouyuan Wu\",\"doi\":\"10.3390/app131810054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the low-frequency oscillation problem of high-proportion wind power and energy storage connected to the power system, this paper establishes a system small signal model according to the matrix similarity theory, which lays a foundation for the research on oscillation characteristics, mechanism analysis, and suppression measures. Combined with the different installation positions of the inverter-side converter and the inverter-side POD (Power Oscillation Damper) controller of the energy storage device, the suppression mechanism and damping oscillation ability of the two on low-frequency oscillation were analyzed. Under multiple optimization objectives, the parameters of the damping controller are optimized by Pareto and improved particle swarm algorithms. Finally, through Matlab/Simulink simulation, the effectiveness of the Pareto and improved particle swarm algorithm in suppressing low-frequency oscillation of the system is verified.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810054\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810054","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

针对高比例风电和储能接入电力系统的低频振荡问题,根据矩阵相似理论建立了系统小信号模型,为振荡特性研究、机理分析和抑制措施研究奠定了基础。结合储能装置逆变侧变流器和逆变侧POD(功率振荡阻尼器)控制器安装位置的不同,分析了两者对低频振荡的抑制机理和阻尼振荡能力。在多优化目标下,采用Pareto算法和改进粒子群算法对阻尼控制器参数进行优化。最后,通过Matlab/Simulink仿真,验证了Pareto算法和改进粒子群算法抑制系统低频振荡的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Low-Frequency Oscillation Damping Control of Wind Storage System Based on Pareto and Improved Particle Swarm Algorithm
Aiming at the low-frequency oscillation problem of high-proportion wind power and energy storage connected to the power system, this paper establishes a system small signal model according to the matrix similarity theory, which lays a foundation for the research on oscillation characteristics, mechanism analysis, and suppression measures. Combined with the different installation positions of the inverter-side converter and the inverter-side POD (Power Oscillation Damper) controller of the energy storage device, the suppression mechanism and damping oscillation ability of the two on low-frequency oscillation were analyzed. Under multiple optimization objectives, the parameters of the damping controller are optimized by Pareto and improved particle swarm algorithms. Finally, through Matlab/Simulink simulation, the effectiveness of the Pareto and improved particle swarm algorithm in suppressing low-frequency oscillation of the system is verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences-Basel
Applied Sciences-Basel CHEMISTRY, MULTIDISCIPLINARYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.30
自引率
11.10%
发文量
10882
期刊介绍: Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信