微波辅助合成Cr(III)的希夫碱和混合配体配合物:与常规方法的比较和抗菌研究

IF 0.5 Q4 EDUCATION & EDUCATIONAL RESEARCH
Shobhana Sharma, Poonam Yadav, Seema, Suman Kumari, M. Ranka
{"title":"微波辅助合成Cr(III)的希夫碱和混合配体配合物:与常规方法的比较和抗菌研究","authors":"Shobhana Sharma, Poonam Yadav, Seema, Suman Kumari, M. Ranka","doi":"10.31788/rjc.2023.1628228","DOIUrl":null,"url":null,"abstract":"The Sustainable/Greener approach is prioritized over the conventional approach because of its environment-friendly, less time-consuming, less energy-consuming, less hazardous compounds synthesis, and low expenditure. Using a greener approach involving the use of microwave, Cr complexes were synthesized from Schiff base and various bidentate ligands and compared with conventional methods. Condensing 2-amino pyridine and isatin produced Schiff base. Complexes of Cr(III) were synthesized by using some bio-potent secondary ligands with Schiff base. Both Schiff base and complexes were characterized by FTIR spectroscopy, 1H NMR spectroscopy, magnetic moment analysis, elemental investigation, etc. The synthesized compounds will be further used for biological evaluation that can be further used in drugs and agrochemical design.","PeriodicalId":21063,"journal":{"name":"Rasayan Journal of Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MICROWAVE-ASSISTED SYNTHESIS OF SCHIFF BASE AND MIXED LIGAND COMPLEXES OF Cr(III): COMPARISON WITH CONVENTIONAL METHOD AND ANTIMICROBIAL STUDIES\",\"authors\":\"Shobhana Sharma, Poonam Yadav, Seema, Suman Kumari, M. Ranka\",\"doi\":\"10.31788/rjc.2023.1628228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sustainable/Greener approach is prioritized over the conventional approach because of its environment-friendly, less time-consuming, less energy-consuming, less hazardous compounds synthesis, and low expenditure. Using a greener approach involving the use of microwave, Cr complexes were synthesized from Schiff base and various bidentate ligands and compared with conventional methods. Condensing 2-amino pyridine and isatin produced Schiff base. Complexes of Cr(III) were synthesized by using some bio-potent secondary ligands with Schiff base. Both Schiff base and complexes were characterized by FTIR spectroscopy, 1H NMR spectroscopy, magnetic moment analysis, elemental investigation, etc. The synthesized compounds will be further used for biological evaluation that can be further used in drugs and agrochemical design.\",\"PeriodicalId\":21063,\"journal\":{\"name\":\"Rasayan Journal of Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rasayan Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31788/rjc.2023.1628228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rasayan Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31788/rjc.2023.1628228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

摘要

可持续/绿色方法比传统方法优先考虑,因为它对环境友好,更节省时间,更少消耗能源,更少危险化合物的合成,以及低支出。采用微波技术合成了以希夫碱和各种双齿配体为原料的Cr配合物,并与传统方法进行了比较。2-氨基吡啶和isatin缩合生成席夫碱。利用一些具有生物活性的席夫碱二级配体合成了Cr(III)配合物。采用FTIR、1H NMR、磁矩分析、元素研究等方法对希夫碱及其配合物进行了表征。合成的化合物将进一步用于生物评价,可进一步用于药物和农化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MICROWAVE-ASSISTED SYNTHESIS OF SCHIFF BASE AND MIXED LIGAND COMPLEXES OF Cr(III): COMPARISON WITH CONVENTIONAL METHOD AND ANTIMICROBIAL STUDIES
The Sustainable/Greener approach is prioritized over the conventional approach because of its environment-friendly, less time-consuming, less energy-consuming, less hazardous compounds synthesis, and low expenditure. Using a greener approach involving the use of microwave, Cr complexes were synthesized from Schiff base and various bidentate ligands and compared with conventional methods. Condensing 2-amino pyridine and isatin produced Schiff base. Complexes of Cr(III) were synthesized by using some bio-potent secondary ligands with Schiff base. Both Schiff base and complexes were characterized by FTIR spectroscopy, 1H NMR spectroscopy, magnetic moment analysis, elemental investigation, etc. The synthesized compounds will be further used for biological evaluation that can be further used in drugs and agrochemical design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rasayan Journal of Chemistry
Rasayan Journal of Chemistry Energy-Energy (all)
CiteScore
1.90
自引率
0.00%
发文量
196
期刊介绍: RASĀYAN Journal of Chemistry [RJC] signifies a confluence of diverse streams of chemistry to stir up the cerebral powers of its contributors and readers. By introducing the journal by this name, we humbly intent to provide an open platform to all researchers, academicians and readers to showcase their ideas and research findings among the people of their own fraternity and to share their vast repository of knowledge and information. The journal seeks to embody the spirit of enquiry and innovation to augment the richness of existing chemistry literature and theories. We also aim towards making this journal an unparalleled reservoir of information and in process aspire to inculcate and expand the research aptitude.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信