瓜皮对氨氮的吸附研究

Hikmatullah Ahmadi, Syed Sanaullah Hbibi
{"title":"瓜皮对氨氮的吸附研究","authors":"Hikmatullah Ahmadi, Syed Sanaullah Hbibi","doi":"10.26502/jatr.23","DOIUrl":null,"url":null,"abstract":"The presence of NH3-N in a watery arrangement is a major issue of environment, NH3-N is the significant water contamination. In this investigation, melon Rind for low-cost adsorbent instead of expensive technologies for removal of NH3-N from water arrangement, hence to increase the attractiveness of melon rind for absorption of NH3-N, Rind was treated with NaOH (0.3 M). To detect groups on the surface of the Rind were utilizing the Fourier Transform Infra-red (FTIR). SEM scanning electron microscopy was utilized morphological properties of the pre-arranged Melon Rind, Energy-dispersive X-beam spectroscopy (EDS) was utilized to research the Rind Surface Elements affecting adsorption are contact adsorbent dose, pH, NH3-N concentration, were investigated. The adsorption limit of NH3-N diminished as the adsorbent portion expanded. The Kinetic examinations showed best coordinated with the pseudo-first-order and pseudo-second-order models. The Freundlich and Langmuir isotherm models were utilized to depict the NH3-N adsorption onto the melon Rind adsorbent, the information gotten from","PeriodicalId":93773,"journal":{"name":"Journal of analytical techniques and research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonia-Nitrogen Adsorption by Melon Rind\",\"authors\":\"Hikmatullah Ahmadi, Syed Sanaullah Hbibi\",\"doi\":\"10.26502/jatr.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of NH3-N in a watery arrangement is a major issue of environment, NH3-N is the significant water contamination. In this investigation, melon Rind for low-cost adsorbent instead of expensive technologies for removal of NH3-N from water arrangement, hence to increase the attractiveness of melon rind for absorption of NH3-N, Rind was treated with NaOH (0.3 M). To detect groups on the surface of the Rind were utilizing the Fourier Transform Infra-red (FTIR). SEM scanning electron microscopy was utilized morphological properties of the pre-arranged Melon Rind, Energy-dispersive X-beam spectroscopy (EDS) was utilized to research the Rind Surface Elements affecting adsorption are contact adsorbent dose, pH, NH3-N concentration, were investigated. The adsorption limit of NH3-N diminished as the adsorbent portion expanded. The Kinetic examinations showed best coordinated with the pseudo-first-order and pseudo-second-order models. The Freundlich and Langmuir isotherm models were utilized to depict the NH3-N adsorption onto the melon Rind adsorbent, the information gotten from\",\"PeriodicalId\":93773,\"journal\":{\"name\":\"Journal of analytical techniques and research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical techniques and research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26502/jatr.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical techniques and research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/jatr.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水体中NH3-N的存在是一个重要的环境问题,NH3-N是水体污染的重要因素。在本研究中,瓜皮作为低成本的吸附剂而不是昂贵的技术来去除水中的NH3-N,因此,为了增加瓜皮对NH3-N的吸收吸引力,我们用NaOH (0.3 M)处理瓜皮,利用傅里叶变换红外(FTIR)检测瓜皮表面的基团。利用扫描电镜(SEM)、扫描电子显微镜(SEM)和能谱分析(EDS)对预布置的瓜皮进行了形貌表征,考察了影响瓜皮表面吸附性能的元素有接触吸附剂剂量、pH、NH3-N浓度等。随着吸附剂部分的扩大,对NH3-N的吸附极限降低。动力学试验结果表明,该模型与拟一阶和拟二阶模型相协调。采用Freundlich和Langmuir等温线模型描述了NH3-N在瓜皮吸附剂上的吸附过程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ammonia-Nitrogen Adsorption by Melon Rind
The presence of NH3-N in a watery arrangement is a major issue of environment, NH3-N is the significant water contamination. In this investigation, melon Rind for low-cost adsorbent instead of expensive technologies for removal of NH3-N from water arrangement, hence to increase the attractiveness of melon rind for absorption of NH3-N, Rind was treated with NaOH (0.3 M). To detect groups on the surface of the Rind were utilizing the Fourier Transform Infra-red (FTIR). SEM scanning electron microscopy was utilized morphological properties of the pre-arranged Melon Rind, Energy-dispersive X-beam spectroscopy (EDS) was utilized to research the Rind Surface Elements affecting adsorption are contact adsorbent dose, pH, NH3-N concentration, were investigated. The adsorption limit of NH3-N diminished as the adsorbent portion expanded. The Kinetic examinations showed best coordinated with the pseudo-first-order and pseudo-second-order models. The Freundlich and Langmuir isotherm models were utilized to depict the NH3-N adsorption onto the melon Rind adsorbent, the information gotten from
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信