{"title":"车联网时代连续流交叉口安全性能评价:微观仿真建模方法","authors":"Alzoubaidi Mutasem, M. Zlatkovic","doi":"10.31075/pis.68.04.01","DOIUrl":null,"url":null,"abstract":"This study employed Federal Highway Administration’s Surrogate Safety Assessment Model (SSAM) to investigate the safety of implementing Connected Vehicles (CVs) at the Continuous Flow Intersection (CFI), by reproducing a real-world corridor, that has multiple successive implementations of CFIs, in VISSIM. Econolite’s ASC/3 Software-in-the-Loop signal controllers and Python-programmed Vehicle to Infrastructure (V2I) communications were embedded in VISSIM. Additionally, the effect of CV-Market Penetration Rate (CV-MPR) on safety is taken into consideration. The study shows that CV deployments at partial and full CFIs leads to notable reductions in crash likelihoods and severities. The total number of conflicts, rear-end and lane change conflicts dropped by 23.8%, 23.6% and 24.4%, respectively at full CFIs and 100% MPR, whereas those were reduced by 6.4%, 4.8% and 17.9%, respectively at partial CFIs and 100% MPR. It was also found that at least a 50% MPR of CVs is required for safety improvements to be influential.","PeriodicalId":32747,"journal":{"name":"Put i Saobracaj","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety Performance Evaluation of Continuous Flow Intersections in the Era of Connected Vehicles: A Microsimulation Modelling Approach\",\"authors\":\"Alzoubaidi Mutasem, M. Zlatkovic\",\"doi\":\"10.31075/pis.68.04.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study employed Federal Highway Administration’s Surrogate Safety Assessment Model (SSAM) to investigate the safety of implementing Connected Vehicles (CVs) at the Continuous Flow Intersection (CFI), by reproducing a real-world corridor, that has multiple successive implementations of CFIs, in VISSIM. Econolite’s ASC/3 Software-in-the-Loop signal controllers and Python-programmed Vehicle to Infrastructure (V2I) communications were embedded in VISSIM. Additionally, the effect of CV-Market Penetration Rate (CV-MPR) on safety is taken into consideration. The study shows that CV deployments at partial and full CFIs leads to notable reductions in crash likelihoods and severities. The total number of conflicts, rear-end and lane change conflicts dropped by 23.8%, 23.6% and 24.4%, respectively at full CFIs and 100% MPR, whereas those were reduced by 6.4%, 4.8% and 17.9%, respectively at partial CFIs and 100% MPR. It was also found that at least a 50% MPR of CVs is required for safety improvements to be influential.\",\"PeriodicalId\":32747,\"journal\":{\"name\":\"Put i Saobracaj\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Put i Saobracaj\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31075/pis.68.04.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Put i Saobracaj","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31075/pis.68.04.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety Performance Evaluation of Continuous Flow Intersections in the Era of Connected Vehicles: A Microsimulation Modelling Approach
This study employed Federal Highway Administration’s Surrogate Safety Assessment Model (SSAM) to investigate the safety of implementing Connected Vehicles (CVs) at the Continuous Flow Intersection (CFI), by reproducing a real-world corridor, that has multiple successive implementations of CFIs, in VISSIM. Econolite’s ASC/3 Software-in-the-Loop signal controllers and Python-programmed Vehicle to Infrastructure (V2I) communications were embedded in VISSIM. Additionally, the effect of CV-Market Penetration Rate (CV-MPR) on safety is taken into consideration. The study shows that CV deployments at partial and full CFIs leads to notable reductions in crash likelihoods and severities. The total number of conflicts, rear-end and lane change conflicts dropped by 23.8%, 23.6% and 24.4%, respectively at full CFIs and 100% MPR, whereas those were reduced by 6.4%, 4.8% and 17.9%, respectively at partial CFIs and 100% MPR. It was also found that at least a 50% MPR of CVs is required for safety improvements to be influential.