{"title":"太阳能光催化处理二次处理废水中雌激素和病原体的同时去除","authors":"S. Fanourgiakis, D. Venieri","doi":"10.30955/gnj.001389","DOIUrl":null,"url":null,"abstract":"Recently, the fate of emerging compounds in environmentally relevant samples has attracted considerable attention. Solar semiconductor photocatalysis may offer an appealing methodology to treat such contaminants. At the same time the use of solar photocatalysis for water and wastewater disinfection is a topic well-documented in the literature. In this respect, the simultaneous degradation of synthetic estrogen 17α-ethynylestradiol (EE2) and Escherichia coli removal employing simulated solar radiation and TiO2 as the photocatalyst was investigated. In general, the more complex the water matrix is the slower E. coli removal becomes, while the presence of E. coli in the reaction mixture did not obstruct EE2 removal. Although EE2 removal occurred relatively fast, overall estrogenic activity was only partially removed. This implies that other species inherently present in the effluent and/or some photocatalytic transformation by-products may be proportionately more estrogenic than EE2. Overall, the use of solar radiation can constitute an advantageous treatment strategy for the simultaneous removal of micropollutants and pathogens from secondary treated effluent.","PeriodicalId":55087,"journal":{"name":"Global Nest Journal","volume":"22 1","pages":"543-552"},"PeriodicalIF":1.2000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Simultaneous removal of estrogens and pathogens from secondary treated wastewater by solar photocatalytic treatment\",\"authors\":\"S. Fanourgiakis, D. Venieri\",\"doi\":\"10.30955/gnj.001389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the fate of emerging compounds in environmentally relevant samples has attracted considerable attention. Solar semiconductor photocatalysis may offer an appealing methodology to treat such contaminants. At the same time the use of solar photocatalysis for water and wastewater disinfection is a topic well-documented in the literature. In this respect, the simultaneous degradation of synthetic estrogen 17α-ethynylestradiol (EE2) and Escherichia coli removal employing simulated solar radiation and TiO2 as the photocatalyst was investigated. In general, the more complex the water matrix is the slower E. coli removal becomes, while the presence of E. coli in the reaction mixture did not obstruct EE2 removal. Although EE2 removal occurred relatively fast, overall estrogenic activity was only partially removed. This implies that other species inherently present in the effluent and/or some photocatalytic transformation by-products may be proportionately more estrogenic than EE2. Overall, the use of solar radiation can constitute an advantageous treatment strategy for the simultaneous removal of micropollutants and pathogens from secondary treated effluent.\",\"PeriodicalId\":55087,\"journal\":{\"name\":\"Global Nest Journal\",\"volume\":\"22 1\",\"pages\":\"543-552\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Nest Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.30955/gnj.001389\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nest Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.30955/gnj.001389","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Simultaneous removal of estrogens and pathogens from secondary treated wastewater by solar photocatalytic treatment
Recently, the fate of emerging compounds in environmentally relevant samples has attracted considerable attention. Solar semiconductor photocatalysis may offer an appealing methodology to treat such contaminants. At the same time the use of solar photocatalysis for water and wastewater disinfection is a topic well-documented in the literature. In this respect, the simultaneous degradation of synthetic estrogen 17α-ethynylestradiol (EE2) and Escherichia coli removal employing simulated solar radiation and TiO2 as the photocatalyst was investigated. In general, the more complex the water matrix is the slower E. coli removal becomes, while the presence of E. coli in the reaction mixture did not obstruct EE2 removal. Although EE2 removal occurred relatively fast, overall estrogenic activity was only partially removed. This implies that other species inherently present in the effluent and/or some photocatalytic transformation by-products may be proportionately more estrogenic than EE2. Overall, the use of solar radiation can constitute an advantageous treatment strategy for the simultaneous removal of micropollutants and pathogens from secondary treated effluent.
期刊介绍:
Global Network of Environmental Science and Technology Journal (Global NEST Journal) is a scientific source of information for professionals in a wide range of environmental disciplines. The Journal is published both in print and online.
Global NEST Journal constitutes an international effort of scientists, technologists, engineers and other interested groups involved in all scientific and technological aspects of the environment, as well, as in application techniques aiming at the development of sustainable solutions. Its main target is to support and assist the dissemination of information regarding the most contemporary methods for improving quality of life through the development and application of technologies and policies friendly to the environment