折线图(折线图)的自动数值转换程序

IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY
M. Yoshitake, Takashi Kono, Suguru Kadohira
{"title":"折线图(折线图)的自动数值转换程序","authors":"M. Yoshitake, Takashi Kono, Suguru Kadohira","doi":"10.2477/jccj.2020-0002","DOIUrl":null,"url":null,"abstract":"A program for fully automatic conversion of line plots in scientific papers into numerical data has been developed. By the conversion of image data into numerical data, users can treat so-called 'spectra' such as X-ray photoelectron spectra and optical absorption spectra in their purpose, plotting them in different ways such as inverse of wave number, subtracting them from users' data, and so forth. This article reports details of the program consisting of many parts, with several deep-learning models with different functions, elimination of literal characters, color separation, etc. Most deep-learning models achieve accuracy higher than 95%. The usability is demonstrated with some examples.","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"41 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Program for Automatic Numerical Conversion of a Line Graph (Line Plot)\",\"authors\":\"M. Yoshitake, Takashi Kono, Suguru Kadohira\",\"doi\":\"10.2477/jccj.2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A program for fully automatic conversion of line plots in scientific papers into numerical data has been developed. By the conversion of image data into numerical data, users can treat so-called 'spectra' such as X-ray photoelectron spectra and optical absorption spectra in their purpose, plotting them in different ways such as inverse of wave number, subtracting them from users' data, and so forth. This article reports details of the program consisting of many parts, with several deep-learning models with different functions, elimination of literal characters, color separation, etc. Most deep-learning models achieve accuracy higher than 95%. The usability is demonstrated with some examples.\",\"PeriodicalId\":41909,\"journal\":{\"name\":\"Journal of Computer Chemistry-Japan\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Chemistry-Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2477/jccj.2020-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Chemistry-Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2477/jccj.2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

开发了一个将科学论文中的线形图全自动转换为数值数据的程序。通过将图像数据转换为数值数据,用户可以将x射线光电子能谱、光学吸收能谱等所谓的“光谱”按照自己的目的进行处理,以波数逆、从用户数据中减去等不同的方式进行绘图。本文详细介绍了由多个部分组成的程序,具有不同功能的几个深度学习模型,消除文字字符,分色等。大多数深度学习模型的准确率高于95%。通过一些示例证明了该方法的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Program for Automatic Numerical Conversion of a Line Graph (Line Plot)
A program for fully automatic conversion of line plots in scientific papers into numerical data has been developed. By the conversion of image data into numerical data, users can treat so-called 'spectra' such as X-ray photoelectron spectra and optical absorption spectra in their purpose, plotting them in different ways such as inverse of wave number, subtracting them from users' data, and so forth. This article reports details of the program consisting of many parts, with several deep-learning models with different functions, elimination of literal characters, color separation, etc. Most deep-learning models achieve accuracy higher than 95%. The usability is demonstrated with some examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Chemistry-Japan
Journal of Computer Chemistry-Japan CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信