富溴宽间隙钙钛矿太阳能电池中的卤化物偏析与界面复合

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Francisco Peña-Camargo, Pietro Caprioglio, Fengshuo Zu, Emilio Gutierrez-Partida, Christian M. Wolff, Kai Brinkmann, Steve Albrecht, Thomas Riedl, Norbert Koch, Dieter Neher, Martin Stolterfoht*
{"title":"富溴宽间隙钙钛矿太阳能电池中的卤化物偏析与界面复合","authors":"Francisco Peña-Camargo,&nbsp;Pietro Caprioglio,&nbsp;Fengshuo Zu,&nbsp;Emilio Gutierrez-Partida,&nbsp;Christian M. Wolff,&nbsp;Kai Brinkmann,&nbsp;Steve Albrecht,&nbsp;Thomas Riedl,&nbsp;Norbert Koch,&nbsp;Dieter Neher,&nbsp;Martin Stolterfoht*","doi":"10.1021/acsenergylett.0c01104","DOIUrl":null,"url":null,"abstract":"<p >Perovskites offer exciting opportunities to realize efficient multijunction photovoltaic devices. This requires high-<i>V</i><sub>OC</sub> and often Br-rich perovskites, which currently suffer from halide segregation. Here, we study triple-cation perovskite cells over a wide bandgap range (~1.5–1.9 eV). While all wide-gap cells (≥1.69 eV) experience rapid phase segregation under illumination, the electroluminescence spectra are less affected by this process. The measurements reveal a low radiative efficiency of the mixed halide phase which explains the <i>V</i><sub>OC</sub> losses with increasing Br content. Photoluminescence measurements on nonsegregated partial cell stacks demonstrate that both transport layers (PTAA and C<sub>60</sub>) induce significant nonradiative interfacial recombination, especially in Br-rich (&gt;30%) samples. Therefore, the presence of the segregated iodide-rich domains is not directly responsible for the <i>V</i><sub>OC</sub> losses. Moreover, LiF can only improve the <i>V</i><sub>OC</sub> of cells that are primarily limited by the <i>n</i>-interface (≤1.75 eV), resulting in 20% efficient 1.7 eV bandgap cells. However, a simultaneous optimization of the <i>p</i>-interface is necessary to further advance larger bandgap (≥1.75 eV) <i>pin</i>-type cells.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"5 8","pages":"2728–2736"},"PeriodicalIF":18.2000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acsenergylett.0c01104","citationCount":"83","resultStr":"{\"title\":\"Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells\",\"authors\":\"Francisco Peña-Camargo,&nbsp;Pietro Caprioglio,&nbsp;Fengshuo Zu,&nbsp;Emilio Gutierrez-Partida,&nbsp;Christian M. Wolff,&nbsp;Kai Brinkmann,&nbsp;Steve Albrecht,&nbsp;Thomas Riedl,&nbsp;Norbert Koch,&nbsp;Dieter Neher,&nbsp;Martin Stolterfoht*\",\"doi\":\"10.1021/acsenergylett.0c01104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Perovskites offer exciting opportunities to realize efficient multijunction photovoltaic devices. This requires high-<i>V</i><sub>OC</sub> and often Br-rich perovskites, which currently suffer from halide segregation. Here, we study triple-cation perovskite cells over a wide bandgap range (~1.5–1.9 eV). While all wide-gap cells (≥1.69 eV) experience rapid phase segregation under illumination, the electroluminescence spectra are less affected by this process. The measurements reveal a low radiative efficiency of the mixed halide phase which explains the <i>V</i><sub>OC</sub> losses with increasing Br content. Photoluminescence measurements on nonsegregated partial cell stacks demonstrate that both transport layers (PTAA and C<sub>60</sub>) induce significant nonradiative interfacial recombination, especially in Br-rich (&gt;30%) samples. Therefore, the presence of the segregated iodide-rich domains is not directly responsible for the <i>V</i><sub>OC</sub> losses. Moreover, LiF can only improve the <i>V</i><sub>OC</sub> of cells that are primarily limited by the <i>n</i>-interface (≤1.75 eV), resulting in 20% efficient 1.7 eV bandgap cells. However, a simultaneous optimization of the <i>p</i>-interface is necessary to further advance larger bandgap (≥1.75 eV) <i>pin</i>-type cells.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"5 8\",\"pages\":\"2728–2736\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acsenergylett.0c01104\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.0c01104\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.0c01104","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 83

摘要

钙钛矿为实现高效的多结光伏器件提供了令人兴奋的机会。这需要高挥发性有机化合物,通常是富br的钙钛矿,而这些钙钛矿目前受到卤化物离析的影响。在这里,我们研究了宽带隙范围(~ 1.5-1.9 eV)的三阳离子钙钛矿电池。所有宽间隙电池(≥1.69 eV)在光照下都经历了快速的相偏析,但电致发光光谱受此过程的影响较小。测量结果表明,混合卤化物相的辐射效率较低,这解释了随着Br含量的增加VOC损失的原因。对非分离部分电池堆的光致发光测量表明,两种传输层(PTAA和C60)都诱导了显著的非辐射界面重组,特别是在富br (>30%)样品中。因此,分离的富碘结构域的存在并不是VOC损失的直接原因。此外,LiF只能提高主要受n界面限制的电池(≤1.75 eV)的VOC,从而产生20%效率的1.7 eV带隙电池。然而,为了进一步推进更大带隙(≥1.75 eV)的引脚型电池,需要同时优化p-界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells

Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells

Perovskites offer exciting opportunities to realize efficient multijunction photovoltaic devices. This requires high-VOC and often Br-rich perovskites, which currently suffer from halide segregation. Here, we study triple-cation perovskite cells over a wide bandgap range (~1.5–1.9 eV). While all wide-gap cells (≥1.69 eV) experience rapid phase segregation under illumination, the electroluminescence spectra are less affected by this process. The measurements reveal a low radiative efficiency of the mixed halide phase which explains the VOC losses with increasing Br content. Photoluminescence measurements on nonsegregated partial cell stacks demonstrate that both transport layers (PTAA and C60) induce significant nonradiative interfacial recombination, especially in Br-rich (>30%) samples. Therefore, the presence of the segregated iodide-rich domains is not directly responsible for the VOC losses. Moreover, LiF can only improve the VOC of cells that are primarily limited by the n-interface (≤1.75 eV), resulting in 20% efficient 1.7 eV bandgap cells. However, a simultaneous optimization of the p-interface is necessary to further advance larger bandgap (≥1.75 eV) pin-type cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信