{"title":"基于径向基网络的同步磁阻电机优化","authors":"Amir Erfani, J. Faiz","doi":"10.2298/sjee2002223n","DOIUrl":null,"url":null,"abstract":"This paper presents surrogate-model based optimization for synchronous reluctance motor (SynRm) with transversally laminated rotor. A radial basis function (RBF) model with 12 input variables and three outputs is first trained. A dataset is obtained using finite element method to estimate parameters of RBF model. By building RBF model, the RBF network can predicts the outputs of the SynRm with good accuracy Using non-dominated sorting genetic algorithm (NSGA II), pareto front is obtained. The SynRm is designed to maximize the maximum developed torque and power factor of the motor with constrained torque ripple.","PeriodicalId":37704,"journal":{"name":"Serbian Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of synchronous reluctance motor based on radial basis network\",\"authors\":\"Amir Erfani, J. Faiz\",\"doi\":\"10.2298/sjee2002223n\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents surrogate-model based optimization for synchronous reluctance motor (SynRm) with transversally laminated rotor. A radial basis function (RBF) model with 12 input variables and three outputs is first trained. A dataset is obtained using finite element method to estimate parameters of RBF model. By building RBF model, the RBF network can predicts the outputs of the SynRm with good accuracy Using non-dominated sorting genetic algorithm (NSGA II), pareto front is obtained. The SynRm is designed to maximize the maximum developed torque and power factor of the motor with constrained torque ripple.\",\"PeriodicalId\":37704,\"journal\":{\"name\":\"Serbian Journal of Electrical Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Serbian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/sjee2002223n\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/sjee2002223n","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Optimization of synchronous reluctance motor based on radial basis network
This paper presents surrogate-model based optimization for synchronous reluctance motor (SynRm) with transversally laminated rotor. A radial basis function (RBF) model with 12 input variables and three outputs is first trained. A dataset is obtained using finite element method to estimate parameters of RBF model. By building RBF model, the RBF network can predicts the outputs of the SynRm with good accuracy Using non-dominated sorting genetic algorithm (NSGA II), pareto front is obtained. The SynRm is designed to maximize the maximum developed torque and power factor of the motor with constrained torque ripple.
期刊介绍:
The main aims of the Journal are to publish peer review papers giving results of the fundamental and applied research in the field of electrical engineering. The Journal covers a wide scope of problems in the following scientific fields: Applied and Theoretical Electromagnetics, Instrumentation and Measurement, Power Engineering, Power Systems, Electrical Machines, Electrical Drives, Electronics, Telecommunications, Computer Engineering, Automatic Control and Systems, Mechatronics, Electrical Materials, Information Technologies, Engineering Mathematics, etc.