J. Thiyagarajan, B. Murugan, Ammasai Gounder Gounden
{"title":"一种具有复扩散矩阵的混沌图像加密方案","authors":"J. Thiyagarajan, B. Murugan, Ammasai Gounder Gounden","doi":"10.2298/SJEE1902247T","DOIUrl":null,"url":null,"abstract":"A chaotic cipher is presented in this paper using 1-Dimensional and 2Dimensional chaotic maps like logistic, Chebyshev and Arnold cat map. Permutation phase utilizes logistic map followed by Arnold cat map whereas in diffusion phase, Chebyshev’s map is used. Subsequently, another complex diffusion matrix is generated from the original image. This matrix is employed to enhance the diffusion effect further. Eventually, strong input image sensitivity is explored due to this diffusion. Simulation results exhibit that the recommended cipher ensures not only high key and entropy value but also less correspondence between nearby pixels along all directions. The key point of this cipher is the high Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity (UACI) values. Due to this impact, the proposed cipher produces completely random encrypted images.","PeriodicalId":37704,"journal":{"name":"Serbian Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A chaotic image encryption scheme with complex diffusion matrix for plain image sensitivity\",\"authors\":\"J. Thiyagarajan, B. Murugan, Ammasai Gounder Gounden\",\"doi\":\"10.2298/SJEE1902247T\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A chaotic cipher is presented in this paper using 1-Dimensional and 2Dimensional chaotic maps like logistic, Chebyshev and Arnold cat map. Permutation phase utilizes logistic map followed by Arnold cat map whereas in diffusion phase, Chebyshev’s map is used. Subsequently, another complex diffusion matrix is generated from the original image. This matrix is employed to enhance the diffusion effect further. Eventually, strong input image sensitivity is explored due to this diffusion. Simulation results exhibit that the recommended cipher ensures not only high key and entropy value but also less correspondence between nearby pixels along all directions. The key point of this cipher is the high Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity (UACI) values. Due to this impact, the proposed cipher produces completely random encrypted images.\",\"PeriodicalId\":37704,\"journal\":{\"name\":\"Serbian Journal of Electrical Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Serbian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/SJEE1902247T\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/SJEE1902247T","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A chaotic image encryption scheme with complex diffusion matrix for plain image sensitivity
A chaotic cipher is presented in this paper using 1-Dimensional and 2Dimensional chaotic maps like logistic, Chebyshev and Arnold cat map. Permutation phase utilizes logistic map followed by Arnold cat map whereas in diffusion phase, Chebyshev’s map is used. Subsequently, another complex diffusion matrix is generated from the original image. This matrix is employed to enhance the diffusion effect further. Eventually, strong input image sensitivity is explored due to this diffusion. Simulation results exhibit that the recommended cipher ensures not only high key and entropy value but also less correspondence between nearby pixels along all directions. The key point of this cipher is the high Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity (UACI) values. Due to this impact, the proposed cipher produces completely random encrypted images.
期刊介绍:
The main aims of the Journal are to publish peer review papers giving results of the fundamental and applied research in the field of electrical engineering. The Journal covers a wide scope of problems in the following scientific fields: Applied and Theoretical Electromagnetics, Instrumentation and Measurement, Power Engineering, Power Systems, Electrical Machines, Electrical Drives, Electronics, Telecommunications, Computer Engineering, Automatic Control and Systems, Mechatronics, Electrical Materials, Information Technologies, Engineering Mathematics, etc.