{"title":"基于带宽扩展带通匹配网络的5G宽带带通滤波功率放大器","authors":"Weimin Wang, Hongmin Zhao, Yongle Wu, Xiaopan Chen","doi":"10.23919/jcc.ea.2022-0349.202302","DOIUrl":null,"url":null,"abstract":"In this paper, a 5G wideband power amplifier (PA) with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network (MN). In this structure, the bandwidth (θC) is defined as a variable in the closed-form equations provided by the microstrip bandpass filter. It can be extended over a wide range only by changing the characteristic impedances of the structure. Different from the other wideband MNs, the extension of bandwidth does not increase the complexity of the structure (order n is fixed). In addition, based on the bandwidth-extended structure, the wideband design of bandpass filtering PA is not limited to the fixed bandwidth of the specific filter structure. The theoretical analysis of the MN and the design flow of the PA are provided in this design. The fabricated bandpass filtering PA can support almost one-octave bandwidth (2–3.8 GHz), covering the two 5G bands (n41 and n78). The drain efficiency of 47%–60% and output power higher than 40 dBm are measured. Good frequency selectivity in S-parameter measurements can be observed.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"1 1","pages":"56-66"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5G wideband bandpass filtering power amplifiers based on a bandwidth-extended bandpass matching network\",\"authors\":\"Weimin Wang, Hongmin Zhao, Yongle Wu, Xiaopan Chen\",\"doi\":\"10.23919/jcc.ea.2022-0349.202302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a 5G wideband power amplifier (PA) with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network (MN). In this structure, the bandwidth (θC) is defined as a variable in the closed-form equations provided by the microstrip bandpass filter. It can be extended over a wide range only by changing the characteristic impedances of the structure. Different from the other wideband MNs, the extension of bandwidth does not increase the complexity of the structure (order n is fixed). In addition, based on the bandwidth-extended structure, the wideband design of bandpass filtering PA is not limited to the fixed bandwidth of the specific filter structure. The theoretical analysis of the MN and the design flow of the PA are provided in this design. The fabricated bandpass filtering PA can support almost one-octave bandwidth (2–3.8 GHz), covering the two 5G bands (n41 and n78). The drain efficiency of 47%–60% and output power higher than 40 dBm are measured. Good frequency selectivity in S-parameter measurements can be observed.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":\"1 1\",\"pages\":\"56-66\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jcc.ea.2022-0349.202302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jcc.ea.2022-0349.202302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
5G wideband bandpass filtering power amplifiers based on a bandwidth-extended bandpass matching network
In this paper, a 5G wideband power amplifier (PA) with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network (MN). In this structure, the bandwidth (θC) is defined as a variable in the closed-form equations provided by the microstrip bandpass filter. It can be extended over a wide range only by changing the characteristic impedances of the structure. Different from the other wideband MNs, the extension of bandwidth does not increase the complexity of the structure (order n is fixed). In addition, based on the bandwidth-extended structure, the wideband design of bandpass filtering PA is not limited to the fixed bandwidth of the specific filter structure. The theoretical analysis of the MN and the design flow of the PA are provided in this design. The fabricated bandpass filtering PA can support almost one-octave bandwidth (2–3.8 GHz), covering the two 5G bands (n41 and n78). The drain efficiency of 47%–60% and output power higher than 40 dBm are measured. Good frequency selectivity in S-parameter measurements can be observed.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.