不完全CSI下上行海量MU-MIMO辅助URLLC的安全短包传输

IF 3.1 3区 计算机科学 Q2 TELECOMMUNICATIONS
Tianyue Yu, Xiaoli Sun, Yueming Cai, Z. Zhu
{"title":"不完全CSI下上行海量MU-MIMO辅助URLLC的安全短包传输","authors":"Tianyue Yu, Xiaoli Sun, Yueming Cai, Z. Zhu","doi":"10.23919/jcc.ea.2021-0067.202302","DOIUrl":null,"url":null,"abstract":"Ultra-reliable and low-latency communication (URLLC) is still in the early stage of research due to its two strict and conflicting requirements, i.e., ultra-low latency and ultra-high reliability, and its impact on security performance is still unclear. Specifically, short-packet communication is expected to meet the delay requirement of URLLC, while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable. In this paper, we investigate the secure short-packet transmission in uplink massive multiuser multiple-input-multiple-output (MU-MIMO) system under imperfect channel state information (CSI). We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput (AST) as the analysis metric. We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes. Furthermore, a one-dimensional search method is used to optimize the maximum system AST for a given pilot length. Numerical results verify the correctness of theoretical analysis, and show that there are some parameters that affect the tradeoff between security and latency. Moreover, appropriately increasing the number of antennas at the base station (BS) and transmission power at user devices (UDs) can increase the system AST to achieve the required threshold.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure short-packet transmission in uplink massive MU-MIMO assisted URLLC under imperfect CSI\",\"authors\":\"Tianyue Yu, Xiaoli Sun, Yueming Cai, Z. Zhu\",\"doi\":\"10.23919/jcc.ea.2021-0067.202302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-reliable and low-latency communication (URLLC) is still in the early stage of research due to its two strict and conflicting requirements, i.e., ultra-low latency and ultra-high reliability, and its impact on security performance is still unclear. Specifically, short-packet communication is expected to meet the delay requirement of URLLC, while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable. In this paper, we investigate the secure short-packet transmission in uplink massive multiuser multiple-input-multiple-output (MU-MIMO) system under imperfect channel state information (CSI). We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput (AST) as the analysis metric. We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes. Furthermore, a one-dimensional search method is used to optimize the maximum system AST for a given pilot length. Numerical results verify the correctness of theoretical analysis, and show that there are some parameters that affect the tradeoff between security and latency. Moreover, appropriately increasing the number of antennas at the base station (BS) and transmission power at user devices (UDs) can increase the system AST to achieve the required threshold.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jcc.ea.2021-0067.202302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jcc.ea.2021-0067.202302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure short-packet transmission in uplink massive MU-MIMO assisted URLLC under imperfect CSI
Ultra-reliable and low-latency communication (URLLC) is still in the early stage of research due to its two strict and conflicting requirements, i.e., ultra-low latency and ultra-high reliability, and its impact on security performance is still unclear. Specifically, short-packet communication is expected to meet the delay requirement of URLLC, while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable. In this paper, we investigate the secure short-packet transmission in uplink massive multiuser multiple-input-multiple-output (MU-MIMO) system under imperfect channel state information (CSI). We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput (AST) as the analysis metric. We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes. Furthermore, a one-dimensional search method is used to optimize the maximum system AST for a given pilot length. Numerical results verify the correctness of theoretical analysis, and show that there are some parameters that affect the tradeoff between security and latency. Moreover, appropriately increasing the number of antennas at the base station (BS) and transmission power at user devices (UDs) can increase the system AST to achieve the required threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
China Communications
China Communications 工程技术-电信学
CiteScore
8.00
自引率
12.20%
发文量
2868
审稿时长
8.6 months
期刊介绍: China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide. The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology. China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信